Spaces:
Sleeping
Sleeping
File size: 4,744 Bytes
5a0f532 5eb66cf 5a0f532 e16eaa7 5a0f532 e16eaa7 5a0f532 e16eaa7 5a0f532 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
# OCR Translate v0.1
# 创建人:曾逸夫
# 创建时间:2022-06-14
# email: zyfiy1314@163.com
# 项目地址:https://gitee.com/CV_Lab/ocr-translate
import os
import gradio as gr
import nltk
import pytesseract
from nltk.tokenize import sent_tokenize
from transformers import MarianMTModel, MarianTokenizer
nltk.download('punkt')
OCR_TR_DESCRIPTION = '''# OCR Translate v0.1
<div id="content_align">基于Tesseract的OCR翻译系统</div>'''
# 图片路径
img_dir = "./data"
# 获取tesseract语言列表
choices = os.popen('tesseract --list-langs').read().split('\n')[1:-1]
# 翻译模型选择
def model_choice(src="en", trg="zh"):
# https://huggingface.co/Helsinki-NLP/opus-mt-en-zh
model_name = f"Helsinki-NLP/opus-mt-{src}-{trg}" # 模型名称
tokenizer = MarianTokenizer.from_pretrained(model_name) # 分词器
model = MarianMTModel.from_pretrained(model_name) # 模型
return tokenizer, model
# tesseract语言列表转pytesseract语言
def ocr_lang(lang_list):
lang_str = ""
lang_len = len(lang_list)
if lang_len == 1:
return lang_list[0]
else:
for i in range(lang_len):
lang_list.insert(lang_len - i, "+")
lang_str = "".join(lang_list[:-1])
return lang_str
# ocr tesseract
def ocr_tesseract(img, languages):
ocr_str = pytesseract.image_to_string(img, lang=ocr_lang(languages))
return ocr_str
# 示例
def set_example_image(example: list) -> dict:
return gr.Image.update(value=example[0])
# 清除
def clear_content():
return None
# 翻译
def translate(input_text):
# 参考:https://huggingface.co/docs/transformers/model_doc/marian
if input_text is None or input_text == "":
return "系统提示:没有可翻译的内容!"
tokenizer, model = model_choice()
translate_text = ""
input_text_list = input_text.split("\n\n")
for i in range(len(input_text_list)):
translated_sub = model.generate(
**tokenizer(sent_tokenize(input_text_list[i]), return_tensors="pt", truncation=True, padding=True))
tgt_text_sub = [tokenizer.decode(t, skip_special_tokens=True) for t in translated_sub]
translate_text_sub = "".join(tgt_text_sub)
translate_text = translate_text + "\n\n" + translate_text_sub
return translate_text[2:]
def main():
with gr.Blocks(css='style.css') as ocr_tr:
gr.Markdown(OCR_TR_DESCRIPTION)
# -------------- OCR 文字提取 --------------
with gr.Box():
with gr.Row():
gr.Markdown("### Step 01: 文字提取")
with gr.Row():
with gr.Column():
with gr.Row():
inputs_img = gr.Image(image_mode="RGB", source="upload", type="pil", label="图片")
with gr.Row():
inputs_lang = gr.CheckboxGroup(choices=choices, type="value", value=['eng'], label='语言')
with gr.Row():
clear_img_btn = gr.Button('Clear')
ocr_btn = gr.Button(value='OCR 提取', variant="primary")
with gr.Column():
imgs_path = sorted(os.listdir(img_dir))
example_images = gr.Dataset(components=[inputs_img],
samples=[[f"{img_dir}/{i}"] for i in imgs_path])
# -------------- 翻译 --------------
with gr.Box():
with gr.Row():
gr.Markdown("### Step 02: 翻译")
with gr.Row():
with gr.Column():
with gr.Row():
outputs_text = gr.Textbox(label="提取内容", lines=20)
with gr.Row():
clear_text_btn = gr.Button('Clear')
translate_btn = gr.Button(value='翻译', variant="primary")
with gr.Column():
outputs_tr_text = gr.Textbox(label="翻译内容", lines=20)
# ---------------------- OCR Tesseract ----------------------
ocr_btn.click(fn=ocr_tesseract, inputs=[inputs_img, inputs_lang], outputs=[
outputs_text,])
clear_img_btn.click(fn=clear_content, inputs=[], outputs=[inputs_img])
example_images.click(fn=set_example_image, inputs=[
example_images,], outputs=[
inputs_img,])
# ---------------------- OCR Tesseract ----------------------
translate_btn.click(fn=translate, inputs=[outputs_text], outputs=[outputs_tr_text])
clear_text_btn.click(fn=clear_content, inputs=[], outputs=[outputs_text])
ocr_tr.launch(inbrowser=True)
if __name__ == '__main__':
main()
|