# OCR Translate v0.1 # 创建人:曾逸夫 # 创建时间:2022-06-14 import os import gradio as gr import nltk import pytesseract from nltk.tokenize import sent_tokenize from transformers import MarianMTModel, MarianTokenizer nltk.download('punkt') OCR_TR_DESCRIPTION = '''# OCR Translate v0.1
基于Tesseract的OCR翻译系统
''' # 图片路径 img_dir = "./data" # 获取tesseract语言列表 choices = os.popen('tesseract --list-langs').read().split('\n')[1:-1] # 翻译模型选择 def model_choice(src="en", trg="zh"): # https://huggingface.co/Helsinki-NLP/opus-mt-en-zh model_name = f"Helsinki-NLP/opus-mt-{src}-{trg}" # 模型名称 tokenizer = MarianTokenizer.from_pretrained(model_name) # 分词器 model = MarianMTModel.from_pretrained(model_name) # 模型 return tokenizer, model # tesseract语言列表转pytesseract语言 def ocr_lang(lang_list): lang_str = "" lang_len = len(lang_list) if lang_len == 1: return lang_list[0] else: for i in range(lang_len): lang_list.insert(lang_len - i, "+") lang_str = "".join(lang_list[:-1]) return lang_str # ocr tesseract def ocr_tesseract(img, languages): ocr_str = pytesseract.image_to_string(img, lang=ocr_lang(languages)) return ocr_str # 示例 def set_example_image(example: list) -> dict: return gr.Image.update(value=example[0]) # 清除 def clear_content(): return None # 翻译 def translate(input_text): # 参考:https://huggingface.co/docs/transformers/model_doc/marian if input_text is None or input_text == "": return "系统提示:没有可翻译的内容!" tokenizer, model = model_choice() translate_text = "" input_text_list = input_text.split("\n\n") for i in range(len(input_text_list)): translated_sub = model.generate( **tokenizer(sent_tokenize(input_text_list[i]), return_tensors="pt", truncation=True, padding=True)) tgt_text_sub = [tokenizer.decode(t, skip_special_tokens=True) for t in translated_sub] translate_text_sub = "".join(tgt_text_sub) translate_text = translate_text + "\n\n" + translate_text_sub return translate_text[2:] def main(): with gr.Blocks(css='style.css') as ocr_tr: gr.Markdown(OCR_TR_DESCRIPTION) # -------------- OCR 文字提取 -------------- with gr.Box(): with gr.Row(): gr.Markdown("### Step 01: 文字提取") with gr.Row(): with gr.Column(): with gr.Row(): inputs_img = gr.Image(image_mode="RGB", source="upload", type="pil", label="图片") with gr.Row(): inputs_lang = gr.CheckboxGroup(choices=choices, type="value", value=['eng'], label='语言') with gr.Row(): clear_img_btn = gr.Button('Clear') ocr_btn = gr.Button(value='OCR 提取', variant="primary") with gr.Column(): imgs_path = sorted(os.listdir(img_dir)) example_images = gr.Dataset(components=[inputs_img], samples=[[f"{img_dir}/{i}"] for i in imgs_path]) # -------------- 翻译 -------------- with gr.Box(): with gr.Row(): gr.Markdown("### Step 02: 翻译") with gr.Row(): with gr.Column(): with gr.Row(): outputs_text = gr.Textbox(label="提取内容", lines=20) with gr.Row(): clear_text_btn = gr.Button('Clear') translate_btn = gr.Button(value='翻译', variant="primary") with gr.Column(): outputs_tr_text = gr.Textbox(label="翻译内容", lines=20) # ---------------------- OCR Tesseract ---------------------- ocr_btn.click(fn=ocr_tesseract, inputs=[inputs_img, inputs_lang], outputs=[ outputs_text,]) clear_img_btn.click(fn=clear_content, inputs=[], outputs=[inputs_img]) example_images.click(fn=set_example_image, inputs=[ example_images,], outputs=[ inputs_img,]) # ---------------------- OCR Tesseract ---------------------- translate_btn.click(fn=translate, inputs=[outputs_text], outputs=[outputs_tr_text]) clear_text_btn.click(fn=clear_content, inputs=[], outputs=[outputs_text]) ocr_tr.launch(inbrowser=True) if __name__ == '__main__': main()