Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from in2in.utils.plot import plot_3d_motion | |
from in2in.utils.paramUtil import HML_KINEMATIC_CHAIN | |
from transformers import AutoModel | |
import random | |
import string | |
def generate_random_filename(length=10, extension='.mp4'): | |
""" | |
Generates a random file name with the specified length and file extension. | |
Args: | |
length (int): The desired length of the file name (excluding the extension). | |
extension (str): The file extension, including the dot (e.g., '.txt', '.jpg', '.pdf'). | |
Returns: | |
str: The generated random file name with the specified extension. | |
""" | |
characters = string.ascii_letters + string.digits | |
filename = ''.join(random.choice(characters) for _ in range(length)) | |
return filename + extension | |
def generate(textI, texti1, texti2): | |
preds = model(textI, texti1, texti2) | |
filename = generate_random_filename(length=15, extension='.mp4') | |
plot_3d_motion(filename, HML_KINEMATIC_CHAIN, preds, title="", fps=30) | |
return filename | |
model = AutoModel.from_pretrained("pabloruizponce/in2IN", trust_remote_code=True) | |
model.to("cuda") | |
demo = gr.Interface(fn=generate, | |
inputs=[gr.Text(label="Interaction Description"), | |
gr.Text(label="Individual1 Description"), | |
gr.Text(label="Individual2 Description")], | |
outputs=gr.Video()) | |
demo.launch() | |