DSINE-space / main.py
pablovela5620's picture
Refactor predict_normal function and add DSINE demo
8c45713
raw
history blame
3.13 kB
import gradio as gr
from gradio_modal import Modal
from gradio_imageslider import ImageSlider
import numpy as np
import torch
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image
import utils.utils as utils
from models.dsine import DSINE
device = torch.device("cpu")
model = DSINE().to(device)
model.pixel_coords = model.pixel_coords.to(device)
model = utils.load_checkpoint("./checkpoints/dsine.pt", model)
model.eval()
def predict_normal(img_np: np.ndarray) -> tuple[np.ndarray, np.ndarray]:
# normalize
normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
with torch.no_grad():
img = np.array(img_np).astype(np.float32) / 255.0
img = torch.from_numpy(img).permute(2, 0, 1).unsqueeze(0).to(device)
_, _, orig_H, orig_W = img.shape
# zero-pad the input image so that both the width and height are multiples of 32
l, r, t, b = utils.pad_input(orig_H, orig_W)
img = F.pad(img, (l, r, t, b), mode="constant", value=0.0)
img = normalize(img)
# NOTE: if intrins is not given, we just assume that the principal point is at the center
# and that the field-of-view is 60 degrees (feel free to modify this assumption)
intrins = utils.get_intrins_from_fov(
new_fov=60.0, H=orig_H, W=orig_W, device=device
).unsqueeze(0)
intrins[:, 0, 2] += l
intrins[:, 1, 2] += t
pred_norm = model(img, intrins=intrins)[-1]
pred_norm = pred_norm[:, :, t : t + orig_H, l : l + orig_W]
# NOTE: by saving the prediction as uint8 png format, you lose a lot of precision
# if you want to use the predicted normals for downstream tasks, we recommend saving them as float32 NPY files
pred_norm_np = (
pred_norm.cpu().detach().numpy()[0, :, :, :].transpose(1, 2, 0)
) # (H, W, 3)
pred_norm_np = ((pred_norm_np + 1.0) / 2.0 * 255.0).astype(np.uint8)
return (img_np, pred_norm_np)
with gr.Blocks() as demo:
gr.Markdown(
"""
# DSINE
Unofficial Gradio demo of [DSINE: Rethinking Inductive Biases for Surface Normal Estimation](https://github.com/baegwangbin/DSINE)
"""
)
with gr.Group():
with gr.Row():
input_img = gr.Image(label="Input image", image_mode="RGB")
output_img = ImageSlider(label="Surface Normal", type="numpy")
# output_img = gr.Image(label="Normal")
btn = gr.Button("Predict")
btn.click(fn=predict_normal, inputs=[input_img], outputs=[output_img])
with Modal(visible=True, allow_user_close=False) as modal:
gr.Markdown(
"""
To use this space, you must agree to the terms and conditions.
Found [HERE](https://github.com/baegwangbin/DSINE/blob/main/LICENSE).
""",
)
btn = gr.Button("I Agree to the Terms and Conditions")
btn.click(lambda: Modal(visible=False), None, modal)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860)