import gradio as gr from gradio_modal import Modal import numpy as np import torch import torch.nn.functional as F from torchvision import transforms import utils.utils as utils from models.dsine import DSINE from pathlib import Path device = torch.device("cpu") model = DSINE().to(device) model.pixel_coords = model.pixel_coords.to(device) model = utils.load_checkpoint("./checkpoints/dsine.pt", model) model.eval() def predict_normal(img_np: np.ndarray) -> tuple[np.ndarray, np.ndarray]: # normalize normalize = transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) with torch.no_grad(): img = np.array(img_np).astype(np.float32) / 255.0 img = torch.from_numpy(img).permute(2, 0, 1).unsqueeze(0).to(device) _, _, orig_H, orig_W = img.shape # zero-pad the input image so that both the width and height are multiples of 32 l, r, t, b = utils.pad_input(orig_H, orig_W) img = F.pad(img, (l, r, t, b), mode="constant", value=0.0) img = normalize(img) # NOTE: if intrins is not given, we just assume that the principal point is at the center # and that the field-of-view is 60 degrees (feel free to modify this assumption) intrins = utils.get_intrins_from_fov( new_fov=60.0, H=orig_H, W=orig_W, device=device ).unsqueeze(0) intrins[:, 0, 2] += l intrins[:, 1, 2] += t pred_norm = model(img, intrins=intrins)[-1] pred_norm = pred_norm[:, :, t : t + orig_H, l : l + orig_W] # NOTE: by saving the prediction as uint8 png format, you lose a lot of precision # if you want to use the predicted normals for downstream tasks, we recommend saving them as float32 NPY files pred_norm_np = ( pred_norm.cpu().detach().numpy()[0, :, :, :].transpose(1, 2, 0) ) # (H, W, 3) pred_norm_np = ((pred_norm_np + 1.0) / 2.0 * 255.0).astype(np.uint8) return pred_norm_np with gr.Blocks() as demo: gr.Markdown( """ # DSINE Unofficial Gradio demo of [DSINE: Rethinking Inductive Biases for Surface Normal Estimation](https://github.com/baegwangbin/DSINE) """ ) with gr.Group(): with gr.Row(): input_img = gr.Image(label="Input image", image_mode="RGB") output_img = gr.Image(label="Surface Normal") # output_img = ImageSlider(label="Surface Normal") btn = gr.Button("Predict") btn.click(fn=predict_normal, inputs=[input_img], outputs=[output_img]) example_files = list(Path("examples").glob("*.png")) example_files.sort() examples = gr.Examples( examples=example_files, inputs=[input_img], outputs=[output_img], fn=predict_normal, cache_examples=True, ) with Modal(visible=True, allow_user_close=False) as modal: gr.Markdown( """ To use this space, you must agree to the terms and conditions. Found [HERE](https://github.com/baegwangbin/DSINE/blob/main/LICENSE). """, ) btn = gr.Button("I Agree to the Terms and Conditions") btn.click(lambda: Modal(visible=False), None, modal) if __name__ == "__main__": demo.launch(server_name="0.0.0.0", server_port=7860)