Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -57,6 +57,129 @@
|
|
57 |
# demo.launch()
|
58 |
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
import re
|
61 |
import gradio as gr
|
62 |
import torch
|
@@ -87,18 +210,19 @@ def pdf_to_images(pdf_file):
|
|
87 |
print(f"Error converting PDF: {e}")
|
88 |
return None
|
89 |
|
90 |
-
def process_document(
|
91 |
-
if
|
92 |
-
return "Please upload a
|
93 |
-
|
94 |
-
images = pdf_to_images(pdf_file)
|
95 |
-
if images is None:
|
96 |
-
return "Failed to process the PDF file."
|
97 |
|
98 |
-
if
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
# prepare encoder inputs
|
104 |
pixel_values = processor(image, return_tensors="pt").pixel_values
|
@@ -129,23 +253,18 @@ def process_document(pdf_file, page_number, question):
|
|
129 |
|
130 |
return processor.token2json(sequence)
|
131 |
|
132 |
-
def update_page_preview(
|
133 |
-
if
|
134 |
return None
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
|
|
|
|
|
|
139 |
|
140 |
-
|
141 |
-
# if pdf_file is None:
|
142 |
-
# return gr.Slider(minimum=1, maximum=1, value=1, step=1, label="Page Number")
|
143 |
-
# images = pdf_to_images(pdf_file)
|
144 |
-
# if images is None:
|
145 |
-
# return gr.Slider(minimum=1, maximum=1, value=1, step=1, label="Page Number")
|
146 |
-
# return gr.Slider(minimum=1, maximum=len(images), value=1, step=1, label="Page Number")
|
147 |
-
|
148 |
-
description = "Gradio Demo for Model-V3, an instance of `VisionEncoderDecoderModel` fine-tuned on DocVQA (document visual question answering). To use it, upload a PDF file, select a page number, type a question, and click 'submit'."
|
149 |
article = "<p style='text-align: center'>Model-V3</p>"
|
150 |
|
151 |
with gr.Blocks() as demo:
|
@@ -154,27 +273,34 @@ with gr.Blocks() as demo:
|
|
154 |
|
155 |
with gr.Row():
|
156 |
with gr.Column(scale=1):
|
157 |
-
|
158 |
-
|
|
|
159 |
with gr.Column(scale=2):
|
160 |
-
page_preview = gr.Image(label="Page Preview")
|
161 |
-
|
162 |
question_input = gr.Textbox(label="Question")
|
163 |
submit_button = gr.Button("Submit")
|
164 |
output = gr.JSON(label="Output")
|
165 |
-
|
166 |
-
def update_interface(
|
167 |
-
if
|
168 |
-
return gr.Slider(minimum=1, maximum=1, value=1, step=1, label="Page Number"), None
|
169 |
-
|
170 |
-
if
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
|
180 |
demo.launch()
|
|
|
57 |
# demo.launch()
|
58 |
|
59 |
|
60 |
+
# import re
|
61 |
+
# import gradio as gr
|
62 |
+
# import torch
|
63 |
+
# from transformers import DonutProcessor, VisionEncoderDecoderModel
|
64 |
+
# import fitz # PyMuPDF
|
65 |
+
# from PIL import Image
|
66 |
+
# import io
|
67 |
+
|
68 |
+
# processor = DonutProcessor.from_pretrained("pacman2223/univ-docu-model-v3")
|
69 |
+
# model = VisionEncoderDecoderModel.from_pretrained("pacman2223/univ-docu-model-v3")
|
70 |
+
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
71 |
+
# model.to(device)
|
72 |
+
|
73 |
+
# def pdf_to_images(pdf_file):
|
74 |
+
# if pdf_file is None:
|
75 |
+
# return None
|
76 |
+
# pdf_path = pdf_file.name # Get the file path
|
77 |
+
|
78 |
+
# images = []
|
79 |
+
# try:
|
80 |
+
# doc = fitz.open(pdf_path)
|
81 |
+
# for page in doc:
|
82 |
+
# pix = page.get_pixmap()
|
83 |
+
# img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
84 |
+
# images.append(img)
|
85 |
+
# return images
|
86 |
+
# except Exception as e:
|
87 |
+
# print(f"Error converting PDF: {e}")
|
88 |
+
# return None
|
89 |
+
|
90 |
+
# def process_document(pdf_file, page_number, question):
|
91 |
+
# if pdf_file is None:
|
92 |
+
# return "Please upload a PDF file."
|
93 |
+
|
94 |
+
# images = pdf_to_images(pdf_file)
|
95 |
+
# if images is None:
|
96 |
+
# return "Failed to process the PDF file."
|
97 |
+
|
98 |
+
# if page_number < 1 or page_number > len(images):
|
99 |
+
# return f"Invalid page number. The PDF has {len(images)} pages."
|
100 |
+
|
101 |
+
# image = images[page_number - 1]
|
102 |
+
|
103 |
+
# # prepare encoder inputs
|
104 |
+
# pixel_values = processor(image, return_tensors="pt").pixel_values
|
105 |
+
|
106 |
+
# # prepare decoder inputs
|
107 |
+
# task_prompt = "{user_input}"
|
108 |
+
# prompt = task_prompt.replace("{user_input}", question)
|
109 |
+
# decoder_input_ids = processor.tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
110 |
+
|
111 |
+
# # generate answer
|
112 |
+
# outputs = model.generate(
|
113 |
+
# pixel_values.to(device),
|
114 |
+
# decoder_input_ids=decoder_input_ids.to(device),
|
115 |
+
# max_length=model.decoder.config.max_position_embeddings,
|
116 |
+
# early_stopping=True,
|
117 |
+
# pad_token_id=processor.tokenizer.pad_token_id,
|
118 |
+
# eos_token_id=processor.tokenizer.eos_token_id,
|
119 |
+
# use_cache=True,
|
120 |
+
# num_beams=1,
|
121 |
+
# bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
122 |
+
# return_dict_in_generate=True,
|
123 |
+
# )
|
124 |
+
|
125 |
+
# # postprocess
|
126 |
+
# sequence = processor.batch_decode(outputs.sequences)[0]
|
127 |
+
# sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
128 |
+
# sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
|
129 |
+
|
130 |
+
# return processor.token2json(sequence)
|
131 |
+
|
132 |
+
# def update_page_preview(pdf_file, page_number):
|
133 |
+
# if pdf_file is None:
|
134 |
+
# return None
|
135 |
+
# images = pdf_to_images(pdf_file)
|
136 |
+
# if images is None or page_number < 1 or page_number > len(images):
|
137 |
+
# return None
|
138 |
+
# return images[page_number - 1]
|
139 |
+
|
140 |
+
# # def update_page_slider(pdf_file):
|
141 |
+
# # if pdf_file is None:
|
142 |
+
# # return gr.Slider(minimum=1, maximum=1, value=1, step=1, label="Page Number")
|
143 |
+
# # images = pdf_to_images(pdf_file)
|
144 |
+
# # if images is None:
|
145 |
+
# # return gr.Slider(minimum=1, maximum=1, value=1, step=1, label="Page Number")
|
146 |
+
# # return gr.Slider(minimum=1, maximum=len(images), value=1, step=1, label="Page Number")
|
147 |
+
|
148 |
+
# description = "Gradio Demo for Model-V3, an instance of `VisionEncoderDecoderModel` fine-tuned on DocVQA (document visual question answering). To use it, upload a PDF file, select a page number, type a question, and click 'submit'."
|
149 |
+
# article = "<p style='text-align: center'>Model-V3</p>"
|
150 |
+
|
151 |
+
# with gr.Blocks() as demo:
|
152 |
+
# gr.Markdown("# Demo: Model-V3 for Document Analysis")
|
153 |
+
# gr.Markdown(description)
|
154 |
+
|
155 |
+
# with gr.Row():
|
156 |
+
# with gr.Column(scale=1):
|
157 |
+
# pdf_input = gr.File(label="Upload PDF", file_types=[".pdf"])
|
158 |
+
# page_slider = gr.Slider(minimum=1, maximum=1, value=1, step=1, label="Page Number")
|
159 |
+
# with gr.Column(scale=2):
|
160 |
+
# page_preview = gr.Image(label="Page Preview")
|
161 |
+
|
162 |
+
# question_input = gr.Textbox(label="Question")
|
163 |
+
# submit_button = gr.Button("Submit")
|
164 |
+
# output = gr.JSON(label="Output")
|
165 |
+
|
166 |
+
# def update_interface(pdf_file):
|
167 |
+
# if pdf_file is None:
|
168 |
+
# return gr.Slider(minimum=1, maximum=1, value=1, step=1, label="Page Number"), None
|
169 |
+
# images = pdf_to_images(pdf_file)
|
170 |
+
# if images is None:
|
171 |
+
# return gr.Slider(minimum=1, maximum=1, value=1, step=1, label="Page Number"), None
|
172 |
+
# return (
|
173 |
+
# gr.Slider(minimum=1, maximum=len(images), value=1, step=1, label="Page Number"),
|
174 |
+
# images[0] # Show the first page by default
|
175 |
+
# )
|
176 |
+
# pdf_input.change(update_interface, inputs=[pdf_input], outputs=[page_slider, page_preview])
|
177 |
+
# page_slider.change(update_page_preview, inputs=[pdf_input, page_slider], outputs=[page_preview])
|
178 |
+
# submit_button.click(process_document, inputs=[pdf_input, page_slider, question_input], outputs=[output])
|
179 |
+
|
180 |
+
# demo.launch()
|
181 |
+
|
182 |
+
|
183 |
import re
|
184 |
import gradio as gr
|
185 |
import torch
|
|
|
210 |
print(f"Error converting PDF: {e}")
|
211 |
return None
|
212 |
|
213 |
+
def process_document(file, page_number, question, input_type):
|
214 |
+
if file is None:
|
215 |
+
return "Please upload a file."
|
|
|
|
|
|
|
|
|
216 |
|
217 |
+
if input_type == "PDF":
|
218 |
+
images = pdf_to_images(file)
|
219 |
+
if images is None:
|
220 |
+
return "Failed to process the PDF file."
|
221 |
+
if page_number < 1 or page_number > len(images):
|
222 |
+
return f"Invalid page number. The PDF has {len(images)} pages."
|
223 |
+
image = images[page_number - 1]
|
224 |
+
else: # Image
|
225 |
+
image = Image.open(file.name)
|
226 |
|
227 |
# prepare encoder inputs
|
228 |
pixel_values = processor(image, return_tensors="pt").pixel_values
|
|
|
253 |
|
254 |
return processor.token2json(sequence)
|
255 |
|
256 |
+
def update_page_preview(file, page_number, input_type):
|
257 |
+
if file is None:
|
258 |
return None
|
259 |
+
if input_type == "PDF":
|
260 |
+
images = pdf_to_images(file)
|
261 |
+
if images is None or page_number < 1 or page_number > len(images):
|
262 |
+
return None
|
263 |
+
return images[page_number - 1]
|
264 |
+
else: # Image
|
265 |
+
return Image.open(file.name)
|
266 |
|
267 |
+
description = "Gradio Demo for Model-V3, an instance of `VisionEncoderDecoderModel` fine-tuned on DocVQA (document visual question answering). To use it, upload a PDF or image file, select a page number (for PDF), type a question, and click 'submit'."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
article = "<p style='text-align: center'>Model-V3</p>"
|
269 |
|
270 |
with gr.Blocks() as demo:
|
|
|
273 |
|
274 |
with gr.Row():
|
275 |
with gr.Column(scale=1):
|
276 |
+
input_type = gr.Radio(["PDF", "Image"], label="Input Type", value="PDF")
|
277 |
+
file_input = gr.File(label="Upload File")
|
278 |
+
page_slider = gr.Slider(minimum=1, maximum=1, value=1, step=1, label="Page Number (PDF only)")
|
279 |
with gr.Column(scale=2):
|
280 |
+
page_preview = gr.Image(label="Page/Image Preview")
|
281 |
+
|
282 |
question_input = gr.Textbox(label="Question")
|
283 |
submit_button = gr.Button("Submit")
|
284 |
output = gr.JSON(label="Output")
|
285 |
+
|
286 |
+
def update_interface(file, input_type):
|
287 |
+
if file is None:
|
288 |
+
return gr.Slider(visible=False, minimum=1, maximum=1, value=1, step=1, label="Page Number (PDF only)"), None
|
289 |
+
|
290 |
+
if input_type == "PDF":
|
291 |
+
images = pdf_to_images(file)
|
292 |
+
if images is None:
|
293 |
+
return gr.Slider(visible=False, minimum=1, maximum=1, value=1, step=1, label="Page Number (PDF only)"), None
|
294 |
+
return (
|
295 |
+
gr.Slider(visible=True, minimum=1, maximum=len(images), value=1, step=1, label="Page Number (PDF only)"),
|
296 |
+
images[0] # Show the first page by default
|
297 |
+
)
|
298 |
+
else: # Image
|
299 |
+
return gr.Slider(visible=False, minimum=1, maximum=1, value=1, step=1, label="Page Number (PDF only)"), Image.open(file.name)
|
300 |
+
|
301 |
+
input_type.change(lambda x: gr.File(label="Upload File", file_types=[".pdf"] if x == "PDF" else ["image/*"]), inputs=[input_type], outputs=[file_input])
|
302 |
+
file_input.change(update_interface, inputs=[file_input, input_type], outputs=[page_slider, page_preview])
|
303 |
+
page_slider.change(update_page_preview, inputs=[file_input, page_slider, input_type], outputs=[page_preview])
|
304 |
+
submit_button.click(process_document, inputs=[file_input, page_slider, question_input, input_type], outputs=[output])
|
305 |
|
306 |
demo.launch()
|