Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from setfit import AbsaModel
|
3 |
+
|
4 |
+
# Load the ABSA model (assuming indo-setfit-absa-bert-base-restaurants is the aspect extraction model)
|
5 |
+
model = AbsaModel.from_pretrained(
|
6 |
+
"firqaaa/indo-setfit-absa-bert-base-restaurants-aspect",
|
7 |
+
"firqaaa/indo-setfit-absa-bert-base-restaurants-polarity",
|
8 |
+
spacy_model="id_core_news_trf",
|
9 |
+
)
|
10 |
+
|
11 |
+
def analyze_text(text):
|
12 |
+
"""
|
13 |
+
Analyzes the input text using the ABSA model and returns aspects and sentiment.
|
14 |
+
|
15 |
+
Args:
|
16 |
+
text: The text to be analyzed.
|
17 |
+
|
18 |
+
Returns:
|
19 |
+
A dictionary containing aspects and sentiment.
|
20 |
+
"""
|
21 |
+
aspects, sentiments = model.predict(text)
|
22 |
+
return {"Aspek": aspects, "Sentimen": sentiments}
|
23 |
+
|
24 |
+
description = "Analisa Aspek dan Sentimen Review Restoran"
|
25 |
+
title = "Analisa Review Restoran Anda"
|
26 |
+
examples = [["Makanannya enak, tapi pelayanannya lambat."]]
|
27 |
+
|
28 |
+
interface = gr.Interface(
|
29 |
+
fn=analyze_text,
|
30 |
+
inputs="textbox",
|
31 |
+
outputs="dict",
|
32 |
+
interpretation="text",
|
33 |
+
description=description,
|
34 |
+
title=title,
|
35 |
+
examples=examples
|
36 |
+
)
|
37 |
+
|
38 |
+
interface.launch()
|