Spaces:
Sleeping
Sleeping
import streamlit as st | |
from utils import * | |
import uuid | |
#Creating session variables | |
if 'unique_id' not in st.session_state: | |
st.session_state['unique_id'] ='' | |
def main(): | |
st.set_page_config(page_title="Resume Screening Assistance") | |
st.title("HR - Resume Screening Assistance...π ") | |
st.subheader("I can help you in resume screening process") | |
st.sidebar.title("π") | |
job_description = st.text_area("Please paste the 'JOB DESCRIPTION' here...",key="1") | |
document_count = st.text_input("No.of 'RESUMES' to return",key="2") | |
# Upload the Resumes (pdf files) | |
pdf = st.file_uploader("Upload resumes here, only PDF files allowed", type=["pdf"],accept_multiple_files=True) | |
submit=st.button("Help me with the analysis") | |
if submit: | |
with st.spinner('Wait for it...'): | |
#Creating a unique ID, so that we can use to query and get only the user uploaded documents from PINECONE vector store | |
st.session_state['unique_id']=uuid.uuid4().hex | |
#Create a documents list out of all the user uploaded pdf files | |
final_docs_list=create_docs(pdf,st.session_state['unique_id']) | |
#st.write(final_docs_list) | |
#Displaying the count of resumes that have been uploaded | |
st.write("*Resumes uploaded* :"+str(len(final_docs_list))) | |
#Create embeddings instance | |
embeddings=create_embeddings_load_data() | |
#Fecth relavant documents from Vectorspace | |
relavant_docs=close_matches(job_description,document_count,final_docs_list,embeddings) | |
#Introducing a line separator | |
st.write(":heavy_minus_sign:" * 30) | |
#For each item in relavant docs - we are displaying some info of it on the UI | |
for item in range(len(relavant_docs)): | |
st.subheader("π "+str(item+1)) | |
#Displaying Filepath | |
st.write("**File** : "+relavant_docs[item][0].metadata['name']) | |
#Introducing Expander feature | |
with st.expander('Show me π'): | |
st.info("**Match Score** : "+ str(1 - relavant_docs[item][1])) | |
#st.write("***"+relavant_docs[item][0].page_content) | |
#Gets the summary of the current item using 'get_summary' function that we have created which uses LLM & Langchain chain | |
summary = get_summary(relavant_docs[item][0]) | |
st.write("**Summary** : "+summary) | |
st.success("Hope I was able to save your timeβ€οΈ") | |
#Invoking main function | |
if __name__ == '__main__': | |
main() |