Spaces:
Runtime error
Runtime error
Create app.py
Browse filesCommit to main
app.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import matplotlib.pyplot as plt
|
2 |
+
import numpy as np
|
3 |
+
import os
|
4 |
+
import PIL
|
5 |
+
import tensorflow as tf
|
6 |
+
|
7 |
+
from tensorflow import keras
|
8 |
+
from tensorflow.keras import layers
|
9 |
+
from tensorflow.keras.models import Sequential
|
10 |
+
|
11 |
+
import pathlib
|
12 |
+
dataset_url = "https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz"
|
13 |
+
data_dir = tf.keras.utils.get_file('flower_photos', origin=dataset_url, untar=True)
|
14 |
+
data_dir = pathlib.Path(data_dir)
|
15 |
+
|
16 |
+
image_count = len(list(data_dir.glob('*/*.jpg')))
|
17 |
+
print(image_count)
|
18 |
+
|
19 |
+
print(os.listdir(data_dir))
|
20 |
+
|
21 |
+
roses = list(data_dir.glob('roses/*'))
|
22 |
+
PIL.Image.open(str(roses[1]))
|
23 |
+
|
24 |
+
daisy = list(data_dir.glob('daisy/*'))
|
25 |
+
PIL.Image.open(str(daisy[2]))
|
26 |
+
|
27 |
+
batch_size = 32
|
28 |
+
img_height = 180
|
29 |
+
img_width = 180
|
30 |
+
|
31 |
+
train_ds = tf.keras.utils.image_dataset_from_directory(
|
32 |
+
data_dir,
|
33 |
+
validation_split=0.2,
|
34 |
+
subset="training",
|
35 |
+
seed=123,
|
36 |
+
image_size=(img_height, img_width),
|
37 |
+
batch_size=batch_size)
|
38 |
+
|
39 |
+
val_ds = tf.keras.utils.image_dataset_from_directory(
|
40 |
+
data_dir,
|
41 |
+
validation_split=0.2,
|
42 |
+
subset="validation",
|
43 |
+
seed=123,
|
44 |
+
image_size=(img_height, img_width),
|
45 |
+
batch_size=batch_size)
|
46 |
+
|
47 |
+
class_names = train_ds.class_names
|
48 |
+
print(class_names)
|
49 |
+
|
50 |
+
import matplotlib.pyplot as plt
|
51 |
+
|
52 |
+
plt.figure(figsize=(12, 12))
|
53 |
+
for images, labels in train_ds.take(1):
|
54 |
+
for i in range(12):
|
55 |
+
ax = plt.subplot(3, 4, i + 1)
|
56 |
+
plt.imshow(images[i].numpy().astype("uint8"))
|
57 |
+
plt.title(class_names[labels[i]])
|
58 |
+
plt.axis("off")
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
num_classes = len(class_names)
|
63 |
+
|
64 |
+
model = Sequential([
|
65 |
+
layers.experimental.preprocessing.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
|
66 |
+
layers.Conv2D(16, 3, padding='same', activation='relu'),
|
67 |
+
layers.MaxPooling2D(),
|
68 |
+
layers.Conv2D(32, 3, padding='same', activation='relu'),
|
69 |
+
layers.MaxPooling2D(),
|
70 |
+
layers.Conv2D(64, 3, padding='same', activation='relu'),
|
71 |
+
layers.MaxPooling2D(),
|
72 |
+
layers.Flatten(),
|
73 |
+
layers.Dense(128, activation='relu'),
|
74 |
+
layers.Dense(num_classes,activation='softmax')
|
75 |
+
])
|
76 |
+
|
77 |
+
model.compile(optimizer='adam',
|
78 |
+
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
|
79 |
+
metrics=['accuracy'])
|
80 |
+
|
81 |
+
|
82 |
+
model.summary()
|
83 |
+
|
84 |
+
epochs=15
|
85 |
+
history = model.fit(
|
86 |
+
train_ds,
|
87 |
+
validation_data=val_ds,
|
88 |
+
epochs=epochs
|
89 |
+
)
|
90 |
+
|
91 |
+
acc = history.history['accuracy']
|
92 |
+
val_acc = history.history['val_accuracy']
|
93 |
+
|
94 |
+
loss = history.history['loss']
|
95 |
+
val_loss = history.history['val_loss']
|
96 |
+
|
97 |
+
epochs_range = range(epochs)
|
98 |
+
|
99 |
+
plt.figure(figsize=(12, 8))
|
100 |
+
plt.subplot(1, 2, 1)
|
101 |
+
plt.plot(epochs_range, acc, label='Training Accuracy')
|
102 |
+
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
|
103 |
+
plt.legend(loc='lower right')
|
104 |
+
plt.title('Training and Validation Accuracy')
|
105 |
+
|
106 |
+
plt.subplot(1, 2, 2)
|
107 |
+
plt.plot(epochs_range, loss, label='Training Loss')
|
108 |
+
plt.plot(epochs_range, val_loss, label='Validation Loss')
|
109 |
+
plt.legend(loc='upper right')
|
110 |
+
plt.title('Training and Validation Loss')
|
111 |
+
plt.show()
|
112 |
+
|
113 |
+
def resize_image(input_image):
|
114 |
+
img = PIL.Image.fromarray(input_image)
|
115 |
+
resized_img = img.resize((180, 180))
|
116 |
+
resized_array = np.array(resized_img)
|
117 |
+
return resized_array
|
118 |
+
|
119 |
+
|
120 |
+
def predict_input_image(img):
|
121 |
+
img=resize_image(img)
|
122 |
+
img_4d=img.reshape(-1,180,180,3)
|
123 |
+
prediction=model.predict(img_4d)[0]
|
124 |
+
return {class_names[i]: float(prediction[i]) for i in range(5)}
|
125 |
+
|
126 |
+
|
127 |
+
import gradio as gr
|
128 |
+
gr.Interface(fn=predict_input_image,
|
129 |
+
inputs=gr.Image(),
|
130 |
+
outputs=gr.Label(num_top_classes=5),
|
131 |
+
live=False).launch(debug='True')
|
132 |
+
|