File size: 8,653 Bytes
9d3162f
 
 
 
 
 
 
 
 
 
 
 
4b734ff
9d3162f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import cv2
import numpy as np
import os
import time
import ffmpeg


class CaesarYolo:
    def __init__(self) -> None:
        self.CONFIDENCE = 0.5
        self.SCORE_THRESHOLD = 0.5
        self.IOU_THRESHOLD = 0.5
        self.current_dir = os.path.realpath(__file__).replace(f"/CaesarYolo.py","")
        config_path = f"{self.current_dir}/cfg/yolov3.cfg"
        weights_path = f"{self.current_dir}/weights/yolov3.weights"
        self.font_scale = 1
        self.thickness = 1
        self.LABELS = open(f"{self.current_dir}/data/coco.names").read().strip().split("\n")
        self.COLORS = np.random.randint(0, 255, size=(len(self.LABELS), 3), dtype="uint8")

        self.net = cv2.dnn.readNetFromDarknet(config_path, weights_path)

        self.ln = self.net.getLayerNames()
        try:
            self.ln = [self.ln[i[0] - 1] for i in self.net.getUnconnectedOutLayers()]
        except IndexError:
            # in case getUnconnectedOutLayers() returns 1D array when CUDA isn't available
            self.ln = [self.ln[i - 1] for i in self.net.getUnconnectedOutLayers()]
    @staticmethod
    def compress_video(video_full_path, output_file_name, target_size):
        # Reference: https://en.wikipedia.org/wiki/Bit_rate#Encoding_bit_rate
        min_audio_bitrate = 32000
        max_audio_bitrate = 256000

        probe = ffmpeg.probe(video_full_path)
        # Video duration, in s.
        duration = float(probe['format']['duration'])
        # Audio bitrate, in bps.
        audio_bitrate = float(next((s for s in probe['streams'] if s['codec_type'] == 'audio'), None)['bit_rate'])
        # Target total bitrate, in bps.
        target_total_bitrate = (target_size * 1024 * 8) / (1.073741824 * duration)

        # Target audio bitrate, in bps
        if 10 * audio_bitrate > target_total_bitrate:
            audio_bitrate = target_total_bitrate / 10
            if audio_bitrate < min_audio_bitrate < target_total_bitrate:
                audio_bitrate = min_audio_bitrate
            elif audio_bitrate > max_audio_bitrate:
                audio_bitrate = max_audio_bitrate
        # Target video bitrate, in bps.
        video_bitrate = target_total_bitrate - audio_bitrate

        i = ffmpeg.input(video_full_path)
        ffmpeg.output(i, os.devnull,
                    **{'c:v': 'libx264', 'b:v': video_bitrate, 'pass': 1, 'f': 'mp4'}
                    ).overwrite_output().run()
        ffmpeg.output(i, output_file_name,
                    **{'c:v': 'libx264', 'b:v': video_bitrate, 'pass': 2, 'c:a': 'aac', 'b:a': audio_bitrate}
                    ).overwrite_output().run()


    def video_load(self,videofile):
        self.video_file = f"{ self.current_dir}/{videofile}"
        if self.video_file:
            self.cap = cv2.VideoCapture(self.video_file)
            _, image = self.cap.read()
            h, w = image.shape[:2]
            fourcc = cv2.VideoWriter_fourcc(*"XVID")
            frames = self.cap.get(cv2.CAP_PROP_FRAME_COUNT)
            fps = self.cap.get(cv2.CAP_PROP_FPS)
            
            # calculate duration of the video
            self.duration_seconds = round(frames / fps)
            self.out = cv2.VideoWriter(f"{self.current_dir}/output.avi", fourcc, 20.0, (w, h))
            self.overall_time_taken = []
    def caesar_object_detect(self,image,verbose=False):
        if self.video_file and image is "video":
            _,image = self.cap.read()
        try:
            h, w = image.shape[:2]
        except AttributeError as aex:
            return None,None,None
        blob = cv2.dnn.blobFromImage(image, 1/255.0, (416, 416), swapRB=True, crop=False)
        self.net.setInput(blob)
        start = time.perf_counter()
        layer_outputs = self.net.forward(self.ln)
        time_took = time.perf_counter() - start
        if verbose == True:
            print("Time took:", time_took)
        if self.video_file:
            self.overall_time_taken.append(time_took)
            time_elapsed = round(sum(self.overall_time_taken),3)
            approx_finish = self.duration_seconds *4.6 # seconds
        boxes, confidences, class_ids = [], [], []

        # loop over each of the layer outputs
        for output in layer_outputs:
            # loop over each of the object detections
            for detection in output:
                # extract the class id (label) and confidence (as a probability) of
                # the current object detection
                scores = detection[5:]
                class_id = np.argmax(scores)
                confidence = scores[class_id]
                # discard weak predictions by ensuring the detected
                # probability is greater than the minimum probability
                if confidence > self.CONFIDENCE:
                    # scale the bounding box coordinates back relative to the
                    # size of the image, keeping in mind that YOLO actually
                    # returns the center (x, y)-coordinates of the bounding
                    # box followed by the boxes' width and height
                    box = detection[:4] * np.array([w, h, w, h])
                    (centerX, centerY, width, height) = box.astype("int")

                    # use the center (x, y)-coordinates to derive the top and
                    # and left corner of the bounding box
                    x = int(centerX - (width / 2))
                    y = int(centerY - (height / 2))

                    # update our list of bounding box coordinates, confidences,
                    # and class IDs
                    boxes.append([x, y, int(width), int(height)])
                    confidences.append(float(confidence))
                    class_ids.append(class_id)

        # perform the non maximum suppression given the scores defined before
        idxs = cv2.dnn.NMSBoxes(boxes, confidences, self.SCORE_THRESHOLD, self.IOU_THRESHOLD)

        self.font_scale = 1
        self.thickness = 1

        # ensure at least one detection exists
        if len(idxs) > 0:
            # loop over the indexes we are keeping
            for i in idxs.flatten():
                # extract the bounding box coordinates
                x, y = boxes[i][0], boxes[i][1]
                w, h = boxes[i][2], boxes[i][3]
                # draw a bounding box rectangle and label on the image

                color = [int(c) for c in self.COLORS[class_ids[i]]]
                cv2.rectangle(image, (x, y), (x + w, y + h), color=color, thickness=self.thickness)
                text = f"{self.LABELS[class_ids[i]]}: {confidences[i]:.2f}"
                # calculate text width & height to draw the transparent boxes as background of the text
                (text_width, text_height) = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, fontScale=self.font_scale, thickness=self.thickness)[0]
                text_offset_x = x
                text_offset_y = y - 5
                box_coords = ((text_offset_x, text_offset_y), (text_offset_x + text_width + 2, text_offset_y - text_height))
                overlay = image.copy()
                cv2.rectangle(overlay, box_coords[0], box_coords[1], color=color, thickness=cv2.FILLED)
                # add opacity (transparency to the box)
                image = cv2.addWeighted(overlay, 0.6, image, 0.4, 0)
                # now put the text (label: confidence %)
                cv2.putText(image, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX,
                    fontScale=self.font_scale, color=(0, 0, 0), thickness=self.thickness)
        if self.video_file:
            self.out.write(image)
            return image,time_elapsed,approx_finish
        elif not self.video_file:
            return image,0,0

if __name__ == "__main__":
    def test():
        caesaryolo = CaesarYolo()
        caesaryolo.video_load("car-detection.mp4")
        while True:
            image,time_elapsed,end_time = caesaryolo.caesar_object_detect("video")
            if image is not None:
                print(round(time_elapsed,3),"out of",end_time)
                cv2.imshow("image", image)
            
                if ord("q") == cv2.waitKey(1):
                    break
            else:
                break


        caesaryolo.cap.release()
        cv2.destroyAllWindows()
    def convert_avi_to_mp4(avi_file_path, output_name):
        os.system(f"ffmpeg -y -i {avi_file_path} {output_name}") 
        return True

    CURRENT_DIR = os.path.realpath(__file__).replace(f"/CaesarYolo.py","")
    #convert_avi_to_mp4(,)
    import subprocess

    #process = subprocess.Popen(ffmpeg_command, stdout = subprocess.PIPE, stderr = subprocess.STDOUT, bufsize = -1)