CaesarCloudSync
CaesarAI Deployed
9d3162f
raw
history blame
18.7 kB
import torch
import torch.nn as nn
import numpy as np
# let us run this cell only if CUDA is available
# We will use ``torch.device`` objects to move tensors in and out of GPU
if torch.cuda.is_available():
x = torch.randn(1)
device = torch.device("cuda") # a CUDA device object
y = torch.ones_like(x, device=device) # directly create a tensor on GPU
x = x.to(device) # or just use strings ``.to("cuda")``
z = x + y
print(z)
print(z.to("cpu", torch.double)) # ``.to`` can also change dtype together!
class YoloLayer(nn.Module):
def __init__(self, anchor_mask=[], num_classes=0, anchors=[], num_anchors=1):
super(YoloLayer, self).__init__()
self.anchor_mask = anchor_mask
self.num_classes = num_classes
self.anchors = anchors
self.num_anchors = num_anchors
self.anchor_step = len(anchors)/num_anchors
self.coord_scale = 1
self.noobject_scale = 1
self.object_scale = 5
self.class_scale = 1
self.thresh = 0.6
self.stride = 32
self.seen = 0
def forward(self, output, nms_thresh):
self.thresh = nms_thresh
masked_anchors = []
for m in self.anchor_mask:
masked_anchors += self.anchors[m*self.anchor_step:(m+1)*self.anchor_step]
masked_anchors = [anchor/self.stride for anchor in masked_anchors]
boxes = get_region_boxes(output.data, self.thresh, self.num_classes, masked_anchors, len(self.anchor_mask))
return boxes
class Upsample(nn.Module):
def __init__(self, stride=2):
super(Upsample, self).__init__()
self.stride = stride
def forward(self, x):
stride = self.stride
assert(x.data.dim() == 4)
B = x.data.size(0)
C = x.data.size(1)
H = x.data.size(2)
W = x.data.size(3)
ws = stride
hs = stride
x = x.view(B, C, H, 1, W, 1).expand(B, C, H, stride, W, stride).contiguous().view(B, C, H*stride, W*stride)
return x
#for route and shortcut
class EmptyModule(nn.Module):
def __init__(self):
super(EmptyModule, self).__init__()
def forward(self, x):
return x
# support route shortcut
class Darknet(nn.Module):
def __init__(self, cfgfile):
super(Darknet, self).__init__()
self.blocks = parse_cfg(cfgfile)
self.models = self.create_network(self.blocks) # merge conv, bn,leaky
self.loss = self.models[len(self.models)-1]
self.width = int(self.blocks[0]['width'])
self.height = int(self.blocks[0]['height'])
self.header = torch.IntTensor([0,0,0,0])
self.seen = 0
def forward(self, x, nms_thresh):
ind = -2
self.loss = None
outputs = dict()
out_boxes = []
for block in self.blocks:
ind = ind + 1
if block['type'] == 'net':
continue
elif block['type'] in ['convolutional', 'upsample']:
x = self.models[ind](x)
outputs[ind] = x
elif block['type'] == 'route':
layers = block['layers'].split(',')
layers = [int(i) if int(i) > 0 else int(i)+ind for i in layers]
if len(layers) == 1:
x = outputs[layers[0]]
outputs[ind] = x
elif len(layers) == 2:
x1 = outputs[layers[0]]
x2 = outputs[layers[1]]
x = torch.cat((x1,x2),1)
outputs[ind] = x
elif block['type'] == 'shortcut':
from_layer = int(block['from'])
activation = block['activation']
from_layer = from_layer if from_layer > 0 else from_layer + ind
x1 = outputs[from_layer]
x2 = outputs[ind-1]
x = x1 + x2
outputs[ind] = x
elif block['type'] == 'yolo':
boxes = self.models[ind](x, nms_thresh)
out_boxes.append(boxes)
else:
print('unknown type %s' % (block['type']))
return out_boxes
def print_network(self):
print_cfg(self.blocks)
def create_network(self, blocks):
models = nn.ModuleList()
prev_filters = 3
out_filters =[]
prev_stride = 1
out_strides = []
conv_id = 0
for block in blocks:
if block['type'] == 'net':
prev_filters = int(block['channels'])
continue
elif block['type'] == 'convolutional':
conv_id = conv_id + 1
batch_normalize = int(block['batch_normalize'])
filters = int(block['filters'])
kernel_size = int(block['size'])
stride = int(block['stride'])
is_pad = int(block['pad'])
pad = (kernel_size-1)//2 if is_pad else 0
activation = block['activation']
model = nn.Sequential()
if batch_normalize:
model.add_module('conv{0}'.format(conv_id), nn.Conv2d(prev_filters, filters, kernel_size, stride, pad, bias=False))
model.add_module('bn{0}'.format(conv_id), nn.BatchNorm2d(filters))
else:
model.add_module('conv{0}'.format(conv_id), nn.Conv2d(prev_filters, filters, kernel_size, stride, pad))
if activation == 'leaky':
model.add_module('leaky{0}'.format(conv_id), nn.LeakyReLU(0.1, inplace=True))
prev_filters = filters
out_filters.append(prev_filters)
prev_stride = stride * prev_stride
out_strides.append(prev_stride)
models.append(model)
elif block['type'] == 'upsample':
stride = int(block['stride'])
out_filters.append(prev_filters)
prev_stride = prev_stride // stride
out_strides.append(prev_stride)
models.append(Upsample(stride))
elif block['type'] == 'route':
layers = block['layers'].split(',')
ind = len(models)
layers = [int(i) if int(i) > 0 else int(i)+ind for i in layers]
if len(layers) == 1:
prev_filters = out_filters[layers[0]]
prev_stride = out_strides[layers[0]]
elif len(layers) == 2:
assert(layers[0] == ind - 1)
prev_filters = out_filters[layers[0]] + out_filters[layers[1]]
prev_stride = out_strides[layers[0]]
out_filters.append(prev_filters)
out_strides.append(prev_stride)
models.append(EmptyModule())
elif block['type'] == 'shortcut':
ind = len(models)
prev_filters = out_filters[ind-1]
out_filters.append(prev_filters)
prev_stride = out_strides[ind-1]
out_strides.append(prev_stride)
models.append(EmptyModule())
elif block['type'] == 'yolo':
yolo_layer = YoloLayer()
anchors = block['anchors'].split(',')
anchor_mask = block['mask'].split(',')
yolo_layer.anchor_mask = [int(i) for i in anchor_mask]
yolo_layer.anchors = [float(i) for i in anchors]
yolo_layer.num_classes = int(block['classes'])
yolo_layer.num_anchors = int(block['num'])
yolo_layer.anchor_step = len(yolo_layer.anchors)//yolo_layer.num_anchors
yolo_layer.stride = prev_stride
out_filters.append(prev_filters)
out_strides.append(prev_stride)
models.append(yolo_layer)
else:
print('unknown type %s' % (block['type']))
return models
def load_weights(self, weightfile):
print()
fp = open(weightfile, 'rb')
header = np.fromfile(fp, count=5, dtype=np.int32)
self.header = torch.from_numpy(header)
self.seen = self.header[3]
buf = np.fromfile(fp, dtype = np.float32)
fp.close()
start = 0
ind = -2
counter = 3
for block in self.blocks:
if start >= buf.size:
break
ind = ind + 1
if block['type'] == 'net':
continue
elif block['type'] == 'convolutional':
model = self.models[ind]
batch_normalize = int(block['batch_normalize'])
if batch_normalize:
start = load_conv_bn(buf, start, model[0], model[1])
else:
start = load_conv(buf, start, model[0])
elif block['type'] == 'upsample':
pass
elif block['type'] == 'route':
pass
elif block['type'] == 'shortcut':
pass
elif block['type'] == 'yolo':
pass
else:
print('unknown type %s' % (block['type']))
percent_comp = (counter / len(self.blocks)) * 100
print('Loading weights. Please Wait...{:.2f}% Complete'.format(percent_comp), end = '\r', flush = True)
counter += 1
def convert2cpu(gpu_matrix):
return torch.FloatTensor(gpu_matrix.size()).copy_(gpu_matrix)
def convert2cpu_long(gpu_matrix):
return torch.LongTensor(gpu_matrix.size()).copy_(gpu_matrix)
def get_region_boxes(output, conf_thresh, num_classes, anchors, num_anchors, only_objectness = 1, validation = False):
anchor_step = len(anchors)//num_anchors
if output.dim() == 3:
output = output.unsqueeze(0)
batch = output.size(0)
assert(output.size(1) == (5+num_classes)*num_anchors)
h = output.size(2)
w = output.size(3)
all_boxes = []
output = output.view(batch*num_anchors, 5+num_classes, h*w).transpose(0,1).contiguous().view(5+num_classes, batch*num_anchors*h*w)
grid_x = torch.linspace(0, w-1, w).repeat(h,1).repeat(batch*num_anchors, 1, 1).view(batch*num_anchors*h*w).type_as(output) #cuda()
grid_y = torch.linspace(0, h-1, h).repeat(w,1).t().repeat(batch*num_anchors, 1, 1).view(batch*num_anchors*h*w).type_as(output) #cuda()
xs = torch.sigmoid(output[0]) + grid_x
ys = torch.sigmoid(output[1]) + grid_y
anchor_w = torch.Tensor(anchors).view(num_anchors, anchor_step).index_select(1, torch.LongTensor([0]))
anchor_h = torch.Tensor(anchors).view(num_anchors, anchor_step).index_select(1, torch.LongTensor([1]))
anchor_w = anchor_w.repeat(batch, 1).repeat(1, 1, h*w).view(batch*num_anchors*h*w).type_as(output) #cuda()
anchor_h = anchor_h.repeat(batch, 1).repeat(1, 1, h*w).view(batch*num_anchors*h*w).type_as(output) #cuda()
ws = torch.exp(output[2]) * anchor_w
hs = torch.exp(output[3]) * anchor_h
det_confs = torch.sigmoid(output[4])
cls_confs = torch.nn.Softmax(dim=1)(output[5:5+num_classes].transpose(0,1)).detach()
cls_max_confs, cls_max_ids = torch.max(cls_confs, 1)
cls_max_confs = cls_max_confs.view(-1)
cls_max_ids = cls_max_ids.view(-1)
sz_hw = h*w
sz_hwa = sz_hw*num_anchors
det_confs = convert2cpu(det_confs)
cls_max_confs = convert2cpu(cls_max_confs)
cls_max_ids = convert2cpu_long(cls_max_ids)
xs = convert2cpu(xs)
ys = convert2cpu(ys)
ws = convert2cpu(ws)
hs = convert2cpu(hs)
if validation:
cls_confs = convert2cpu(cls_confs.view(-1, num_classes))
for b in range(batch):
boxes = []
for cy in range(h):
for cx in range(w):
for i in range(num_anchors):
ind = b*sz_hwa + i*sz_hw + cy*w + cx
det_conf = det_confs[ind]
if only_objectness:
conf = det_confs[ind]
else:
conf = det_confs[ind] * cls_max_confs[ind]
if conf > conf_thresh:
bcx = xs[ind]
bcy = ys[ind]
bw = ws[ind]
bh = hs[ind]
cls_max_conf = cls_max_confs[ind]
cls_max_id = cls_max_ids[ind]
box = [bcx/w, bcy/h, bw/w, bh/h, det_conf, cls_max_conf, cls_max_id]
if (not only_objectness) and validation:
for c in range(num_classes):
tmp_conf = cls_confs[ind][c]
if c != cls_max_id and det_confs[ind]*tmp_conf > conf_thresh:
box.append(tmp_conf)
box.append(c)
boxes.append(box)
all_boxes.append(boxes)
return all_boxes
def parse_cfg(cfgfile):
blocks = []
fp = open(cfgfile, 'r')
block = None
line = fp.readline()
while line != '':
line = line.rstrip()
if line == '' or line[0] == '#':
line = fp.readline()
continue
elif line[0] == '[':
if block:
blocks.append(block)
block = dict()
block['type'] = line.lstrip('[').rstrip(']')
# set default value
if block['type'] == 'convolutional':
block['batch_normalize'] = 0
else:
key,value = line.split('=')
key = key.strip()
if key == 'type':
key = '_type'
value = value.strip()
block[key] = value
line = fp.readline()
if block:
blocks.append(block)
fp.close()
return blocks
def print_cfg(blocks):
print('layer filters size input output')
prev_width = 416
prev_height = 416
prev_filters = 3
out_filters =[]
out_widths =[]
out_heights =[]
ind = -2
for block in blocks:
ind = ind + 1
if block['type'] == 'net':
prev_width = int(block['width'])
prev_height = int(block['height'])
continue
elif block['type'] == 'convolutional':
filters = int(block['filters'])
kernel_size = int(block['size'])
stride = int(block['stride'])
is_pad = int(block['pad'])
pad = (kernel_size-1)//2 if is_pad else 0
width = (prev_width + 2*pad - kernel_size)//stride + 1
height = (prev_height + 2*pad - kernel_size)//stride + 1
print('%5d %-6s %4d %d x %d / %d %3d x %3d x%4d -> %3d x %3d x%4d' % (ind, 'conv', filters, kernel_size, kernel_size, stride, prev_width, prev_height, prev_filters, width, height, filters))
prev_width = width
prev_height = height
prev_filters = filters
out_widths.append(prev_width)
out_heights.append(prev_height)
out_filters.append(prev_filters)
elif block['type'] == 'upsample':
stride = int(block['stride'])
filters = prev_filters
width = prev_width*stride
height = prev_height*stride
print('%5d %-6s * %d %3d x %3d x%4d -> %3d x %3d x%4d' % (ind, 'upsample', stride, prev_width, prev_height, prev_filters, width, height, filters))
prev_width = width
prev_height = height
prev_filters = filters
out_widths.append(prev_width)
out_heights.append(prev_height)
out_filters.append(prev_filters)
elif block['type'] == 'route':
layers = block['layers'].split(',')
layers = [int(i) if int(i) > 0 else int(i)+ind for i in layers]
if len(layers) == 1:
print('%5d %-6s %d' % (ind, 'route', layers[0]))
prev_width = out_widths[layers[0]]
prev_height = out_heights[layers[0]]
prev_filters = out_filters[layers[0]]
elif len(layers) == 2:
print('%5d %-6s %d %d' % (ind, 'route', layers[0], layers[1]))
prev_width = out_widths[layers[0]]
prev_height = out_heights[layers[0]]
assert(prev_width == out_widths[layers[1]])
assert(prev_height == out_heights[layers[1]])
prev_filters = out_filters[layers[0]] + out_filters[layers[1]]
out_widths.append(prev_width)
out_heights.append(prev_height)
out_filters.append(prev_filters)
elif block['type'] in ['region', 'yolo']:
print('%5d %-6s' % (ind, 'detection'))
out_widths.append(prev_width)
out_heights.append(prev_height)
out_filters.append(prev_filters)
elif block['type'] == 'shortcut':
from_id = int(block['from'])
from_id = from_id if from_id > 0 else from_id+ind
print('%5d %-6s %d' % (ind, 'shortcut', from_id))
prev_width = out_widths[from_id]
prev_height = out_heights[from_id]
prev_filters = out_filters[from_id]
out_widths.append(prev_width)
out_heights.append(prev_height)
out_filters.append(prev_filters)
else:
print('unknown type %s' % (block['type']))
def load_conv(buf, start, conv_model):
num_w = conv_model.weight.numel()
num_b = conv_model.bias.numel()
conv_model.bias.data.copy_(torch.from_numpy(buf[start:start+num_b])); start = start + num_b
conv_model.weight.data.copy_(torch.from_numpy(buf[start:start+num_w]).view_as(conv_model.weight.data)); start = start + num_w
return start
def load_conv_bn(buf, start, conv_model, bn_model):
num_w = conv_model.weight.numel()
num_b = bn_model.bias.numel()
bn_model.bias.data.copy_(torch.from_numpy(buf[start:start+num_b])); start = start + num_b
bn_model.weight.data.copy_(torch.from_numpy(buf[start:start+num_b])); start = start + num_b
bn_model.running_mean.copy_(torch.from_numpy(buf[start:start+num_b])); start = start + num_b
bn_model.running_var.copy_(torch.from_numpy(buf[start:start+num_b])); start = start + num_b
conv_model.weight.data.copy_(torch.from_numpy(buf[start:start+num_w]).view_as(conv_model.weight.data)); start = start + num_w
return start