Spaces:
Sleeping
Sleeping
import cv2 | |
import numpy as np | |
import time | |
import sys | |
import os | |
CONFIDENCE = 0.5 | |
SCORE_THRESHOLD = 0.5 | |
IOU_THRESHOLD = 0.5 | |
# the neural network configuration | |
config_path = "cfg/yolov3.cfg" | |
# the YOLO net weights file | |
weights_path = "weights/yolov3.weights" | |
# loading all the class labels (objects) | |
labels = open("data/coco.names").read().strip().split("\n") | |
# generating colors for each object for later plotting | |
colors = np.random.randint(0, 255, size=(len(labels), 3), dtype="uint8") | |
# load the YOLO network | |
net = cv2.dnn.readNetFromDarknet(config_path, weights_path) | |
# path_name = "images/city_scene.jpg" | |
path_name = sys.argv[1] | |
image = cv2.imread(path_name) | |
file_name = os.path.basename(path_name) | |
filename, ext = file_name.split(".") | |
h, w = image.shape[:2] | |
# create 4D blob | |
blob = cv2.dnn.blobFromImage(image, 1/255.0, (416, 416), swapRB=True, crop=False) | |
# sets the blob as the input of the network | |
net.setInput(blob) | |
# get all the layer names | |
ln = net.getLayerNames() | |
try: | |
ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()] | |
except IndexError: | |
# in case getUnconnectedOutLayers() returns 1D array when CUDA isn't available | |
ln = [ln[i - 1] for i in net.getUnconnectedOutLayers()] | |
# feed forward (inference) and get the network output | |
# measure how much it took in seconds | |
start = time.perf_counter() | |
layer_outputs = net.forward(ln) | |
time_took = time.perf_counter() - start | |
print(f"Time took: {time_took:.2f}s") | |
boxes, confidences, class_ids = [], [], [] | |
# loop over each of the layer outputs | |
for output in layer_outputs: | |
# loop over each of the object detections | |
for detection in output: | |
# extract the class id (label) and confidence (as a probability) of | |
# the current object detection | |
scores = detection[5:] | |
class_id = np.argmax(scores) | |
confidence = scores[class_id] | |
# discard weak predictions by ensuring the detected | |
# probability is greater than the minimum probability | |
if confidence > CONFIDENCE: | |
# scale the bounding box coordinates back relative to the | |
# size of the image, keeping in mind that YOLO actually | |
# returns the center (x, y)-coordinates of the bounding | |
# box followed by the boxes' width and height | |
box = detection[:4] * np.array([w, h, w, h]) | |
(centerX, centerY, width, height) = box.astype("int") | |
# use the center (x, y)-coordinates to derive the top and | |
# and left corner of the bounding box | |
x = int(centerX - (width / 2)) | |
y = int(centerY - (height / 2)) | |
# update our list of bounding box coordinates, confidences, | |
# and class IDs | |
boxes.append([x, y, int(width), int(height)]) | |
confidences.append(float(confidence)) | |
class_ids.append(class_id) | |
# perform the non maximum suppression given the scores defined before | |
idxs = cv2.dnn.NMSBoxes(boxes, confidences, SCORE_THRESHOLD, IOU_THRESHOLD) | |
font_scale = 1 | |
thickness = 1 | |
# ensure at least one detection exists | |
if len(idxs) > 0: | |
# loop over the indexes we are keeping | |
for i in idxs.flatten(): | |
# extract the bounding box coordinates | |
x, y = boxes[i][0], boxes[i][1] | |
w, h = boxes[i][2], boxes[i][3] | |
# draw a bounding box rectangle and label on the image | |
color = [int(c) for c in colors[class_ids[i]]] | |
cv2.rectangle(image, (x, y), (x + w, y + h), color=color, thickness=thickness) | |
text = f"{labels[class_ids[i]]}: {confidences[i]:.2f}" | |
# calculate text width & height to draw the transparent boxes as background of the text | |
(text_width, text_height) = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, fontScale=font_scale, thickness=thickness)[0] | |
text_offset_x = x | |
text_offset_y = y - 5 | |
box_coords = ((text_offset_x, text_offset_y), (text_offset_x + text_width + 2, text_offset_y - text_height)) | |
overlay = image.copy() | |
cv2.rectangle(overlay, box_coords[0], box_coords[1], color=color, thickness=cv2.FILLED) | |
# add opacity (transparency to the box) | |
image = cv2.addWeighted(overlay, 0.6, image, 0.4, 0) | |
# now put the text (label: confidence %) | |
cv2.putText(image, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, | |
fontScale=font_scale, color=(0, 0, 0), thickness=thickness) | |
# cv2.imshow("image", image) | |
# if cv2.waitKey(0) == ord("q"): | |
# pass | |
cv2.imwrite(filename + "_yolo3." + ext, image) |