Spaces:
Running
Running
import cv2 | |
import torch | |
import numpy as np | |
from PIL import Image | |
from typing import List, Callable, Optional | |
from functools import partial | |
from pytorch_grad_cam import GradCAM | |
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget | |
from pytorch_grad_cam.utils.image import show_cam_on_image | |
""" Model wrapper to return a tensor""" | |
class HuggingfaceToTensorModelWrapper(torch.nn.Module): | |
def __init__(self, model): | |
super(HuggingfaceToTensorModelWrapper, self).__init__() | |
self.model = model | |
def forward(self, x): | |
return self.model(x).logits | |
class ClassActivationMap(object): | |
def __init__(self, model, processor): | |
self.model = HuggingfaceToTensorModelWrapper(model) | |
target_layer = model.swinv2.layernorm | |
self.target_layer = [target_layer] | |
self.processor = processor | |
def swinT_reshape_transform_huggingface(self, tensor, width, height): | |
result = tensor.reshape(tensor.size(0), | |
height, | |
width, | |
tensor.size(2)) | |
result = result.transpose(2, 3).transpose(1, 2) | |
return result | |
def run_grad_cam_on_image(self, | |
targets_for_gradcam: List[Callable], | |
reshape_transform: Optional[Callable], | |
input_tensor: torch.nn.Module, | |
input_image: Image, | |
method: Callable=GradCAM): | |
with method(model=self.model, | |
target_layers=self.target_layer, | |
reshape_transform=reshape_transform) as cam: | |
# Replicate the tensor for each of the categories we want to create Grad-CAM for: | |
# print(input_tensor.size()) | |
repeated_tensor = input_tensor[None, :].repeat(len(targets_for_gradcam), 1, 1, 1) | |
# print(repeated_tensor.size()) | |
batch_results = cam(input_tensor=repeated_tensor, | |
targets=targets_for_gradcam) | |
results = [] | |
for grayscale_cam in batch_results: | |
visualization = show_cam_on_image(np.float32(input_image) / 255, | |
grayscale_cam, | |
use_rgb=True) | |
# Make it weight less in the notebook: | |
visualization = cv2.resize(visualization, | |
(visualization.shape[1] // 1, visualization.shape[0] // 1)) | |
results.append(visualization) | |
return np.hstack(results) | |
def get_cam(self, image, category_id): | |
image = Image.fromarray(image).resize((self.processor.size['height'], self.processor.size['width'])) | |
img_tensor = self.processor(images=image, return_tensors="pt")['pixel_values'].squeeze() | |
targets_for_gradcam = [ClassifierOutputTarget(category_id)] | |
reshape_transform = partial(self.swinT_reshape_transform_huggingface, | |
width=img_tensor.shape[2] // 32, | |
height=img_tensor.shape[1] // 32) | |
cam = self.run_grad_cam_on_image(input_tensor=img_tensor, | |
input_image=image, | |
targets_for_gradcam=targets_for_gradcam, | |
reshape_transform=reshape_transform) | |
return cam |