Spaces:
Runtime error
Runtime error
spam_classifier: Implement flagging function
Browse filesSigned-off-by: Panchajanya1999 <rsk52959@gmail.com>
- spam_classifier.py +8 -3
spam_classifier.py
CHANGED
@@ -1,8 +1,7 @@
|
|
1 |
# import libraries
|
2 |
import pandas as pd
|
3 |
-
import numpy as np
|
4 |
-
import matplotlib.pyplot as plt
|
5 |
import gradio as gr
|
|
|
6 |
|
7 |
# import string
|
8 |
import string
|
@@ -16,6 +15,9 @@ from sklearn.model_selection import train_test_split
|
|
16 |
# import multinomial naive bayes
|
17 |
from sklearn.naive_bayes import MultinomialNB
|
18 |
|
|
|
|
|
|
|
19 |
# read data from csv file
|
20 |
df = pd.read_csv('dataset/spam.tsv', sep='\t', names=['label', 'message'])
|
21 |
|
@@ -69,12 +71,15 @@ def predict_spam(message):
|
|
69 |
message = 'This is a spam message'
|
70 |
return message
|
71 |
|
|
|
|
|
72 |
iface = gr.Interface(
|
73 |
fn=predict_spam,
|
74 |
inputs=gr.Textbox(lines=2, placeholder="Enter a message to check if it is spam or ham", label="Message", info = "Enter a message"),
|
75 |
outputs=gr.Textbox(lines=2, info="Check if the enetered message is spam or ham", label="Prediction", placeholder = "Output will be here.."),
|
76 |
title="Spam Classifier",
|
77 |
description="Enter a message to check if it is spam or ham",
|
78 |
-
allow_flagging='
|
|
|
79 |
examples=[['Hey, how are you doing?'], ['Congratulations! You have won a free trip to Dubai!']])
|
80 |
iface.launch()
|
|
|
1 |
# import libraries
|
2 |
import pandas as pd
|
|
|
|
|
3 |
import gradio as gr
|
4 |
+
import os
|
5 |
|
6 |
# import string
|
7 |
import string
|
|
|
15 |
# import multinomial naive bayes
|
16 |
from sklearn.naive_bayes import MultinomialNB
|
17 |
|
18 |
+
# read the variable from the environment
|
19 |
+
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
|
20 |
+
|
21 |
# read data from csv file
|
22 |
df = pd.read_csv('dataset/spam.tsv', sep='\t', names=['label', 'message'])
|
23 |
|
|
|
71 |
message = 'This is a spam message'
|
72 |
return message
|
73 |
|
74 |
+
hf_writer = gr.HuggingFaceDatasetSaver(HF_API_TOKEN, "spam-mistakes")
|
75 |
+
|
76 |
iface = gr.Interface(
|
77 |
fn=predict_spam,
|
78 |
inputs=gr.Textbox(lines=2, placeholder="Enter a message to check if it is spam or ham", label="Message", info = "Enter a message"),
|
79 |
outputs=gr.Textbox(lines=2, info="Check if the enetered message is spam or ham", label="Prediction", placeholder = "Output will be here.."),
|
80 |
title="Spam Classifier",
|
81 |
description="Enter a message to check if it is spam or ham",
|
82 |
+
allow_flagging='manual',
|
83 |
+
flagging_callback=hf_writer,
|
84 |
examples=[['Hey, how are you doing?'], ['Congratulations! You have won a free trip to Dubai!']])
|
85 |
iface.launch()
|