Spaces:
Runtime error
Runtime error
Commit
·
807f483
1
Parent(s):
ef1eeb9
Create api.py
Browse files
api.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI,UploadFile,File
|
2 |
+
from pydantic import BaseModel
|
3 |
+
import pickle
|
4 |
+
import json
|
5 |
+
import pandas as pd
|
6 |
+
from tensorflow.keras.models import load_model
|
7 |
+
from tensorflow.keras.preprocessing import image
|
8 |
+
from tensorflow.keras.applications.inception_v3 import preprocess_input
|
9 |
+
import numpy as np
|
10 |
+
import os
|
11 |
+
import gdown
|
12 |
+
import lightgbm as lgb
|
13 |
+
from PIL import Image
|
14 |
+
|
15 |
+
CHUNK_SIZE = 1024
|
16 |
+
|
17 |
+
app = FastAPI(
|
18 |
+
title='Flower Classification API',
|
19 |
+
description='API for Flower Classification',
|
20 |
+
)
|
21 |
+
|
22 |
+
id = "1ry4L9L1-kyc79F1MnYMemJ5P81Gr_mHP"
|
23 |
+
output = "model_flowers_classification.h5"
|
24 |
+
gdown.download(id=id, output=output, quiet=False)
|
25 |
+
# from zipfile import ZipFile
|
26 |
+
# with ZipFile("modelcrops.zip", 'r') as zObject:
|
27 |
+
# zObject.extractall(
|
28 |
+
# path="")
|
29 |
+
|
30 |
+
|
31 |
+
predict_ml=load_model('model_flowers_classification.h5')
|
32 |
+
|
33 |
+
|
34 |
+
@app.post('/predict')
|
35 |
+
async def cropdisease(file: UploadFile = File(...)):
|
36 |
+
try:
|
37 |
+
contents = file.file.read()
|
38 |
+
with open(file.filename, 'wb') as f:
|
39 |
+
f.write(contents)
|
40 |
+
except Exception:
|
41 |
+
return {"message": "There was an error uploading the file"}
|
42 |
+
finally:
|
43 |
+
file.file.close()
|
44 |
+
classes = ['Lilly','Lotus','Orchid','Sunflower', 'Tulip']
|
45 |
+
img=image.load_img(str(file.filename),target_size=(224,224))
|
46 |
+
x=image.img_to_array(img)
|
47 |
+
x=x/255
|
48 |
+
img_data=np.expand_dims(x,axis=0)
|
49 |
+
prediction = predict_ml.predict(img_data)
|
50 |
+
predictions = list(prediction[0])
|
51 |
+
max_num = max(predictions)
|
52 |
+
index = predictions.index(max_num)
|
53 |
+
print(classes[index])
|
54 |
+
os.remove(str(file.filename))
|
55 |
+
return {"output":classes[index]}
|