Commit
·
9d942e2
1
Parent(s):
7990ed8
Rename api.py to app.py
Browse files
api.py
DELETED
@@ -1,55 +0,0 @@
|
|
1 |
-
from fastapi import FastAPI,UploadFile,File
|
2 |
-
from pydantic import BaseModel
|
3 |
-
import pickle
|
4 |
-
import json
|
5 |
-
import pandas as pd
|
6 |
-
from tensorflow.keras.models import load_model
|
7 |
-
from tensorflow.keras.preprocessing import image
|
8 |
-
from tensorflow.keras.applications.inception_v3 import preprocess_input
|
9 |
-
import numpy as np
|
10 |
-
import os
|
11 |
-
import gdown
|
12 |
-
import lightgbm as lgb
|
13 |
-
from PIL import Image
|
14 |
-
|
15 |
-
CHUNK_SIZE = 1024
|
16 |
-
|
17 |
-
app = FastAPI(
|
18 |
-
title='Flower Classification API',
|
19 |
-
description='API for Flower Classification',
|
20 |
-
)
|
21 |
-
|
22 |
-
id = "1ry4L9L1-kyc79F1MnYMemJ5P81Gr_mHP"
|
23 |
-
output = "model_flowers_classification.h5"
|
24 |
-
gdown.download(id=id, output=output, quiet=False)
|
25 |
-
# from zipfile import ZipFile
|
26 |
-
# with ZipFile("modelcrops.zip", 'r') as zObject:
|
27 |
-
# zObject.extractall(
|
28 |
-
# path="")
|
29 |
-
|
30 |
-
|
31 |
-
predict_ml=load_model('model_flowers_classification.h5')
|
32 |
-
|
33 |
-
|
34 |
-
@app.post('/predict')
|
35 |
-
async def flowerpredict(file: UploadFile = File(...)):
|
36 |
-
try:
|
37 |
-
contents = file.file.read()
|
38 |
-
with open(file.filename, 'wb') as f:
|
39 |
-
f.write(contents)
|
40 |
-
except Exception:
|
41 |
-
return {"message": "There was an error uploading the file"}
|
42 |
-
finally:
|
43 |
-
file.file.close()
|
44 |
-
classes = ['Lilly','Lotus','Orchid','Sunflower', 'Tulip']
|
45 |
-
img=image.load_img(str(file.filename),target_size=(224,224))
|
46 |
-
x=image.img_to_array(img)
|
47 |
-
x=x/255
|
48 |
-
img_data=np.expand_dims(x,axis=0)
|
49 |
-
prediction = predict_ml.predict(img_data)
|
50 |
-
predictions = list(prediction[0])
|
51 |
-
max_num = max(predictions)
|
52 |
-
index = predictions.index(max_num)
|
53 |
-
print(classes[index])
|
54 |
-
os.remove(str(file.filename))
|
55 |
-
return {"output":classes[index]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, jsonify ,render_template , redirect
|
2 |
+
from pydantic import BaseModel
|
3 |
+
import pickle
|
4 |
+
import json
|
5 |
+
import pandas as pd
|
6 |
+
from tensorflow.keras.models import load_model
|
7 |
+
from tensorflow.keras.preprocessing import image
|
8 |
+
from tensorflow.keras.applications.inception_v3 import preprocess_input
|
9 |
+
import numpy as np
|
10 |
+
import os
|
11 |
+
import gdown
|
12 |
+
import lightgbm as lgb
|
13 |
+
from PIL import Image
|
14 |
+
|
15 |
+
|
16 |
+
app = Flask(__name__)
|
17 |
+
|
18 |
+
id = "1ry4L9L1-kyc79F1MnYMemJ5P81Gr_mHP"
|
19 |
+
output = "model_flowers_classification.h5"
|
20 |
+
gdown.download(id=id, output=output, quiet=False)
|
21 |
+
|
22 |
+
|
23 |
+
crop_disease_ml=load_model('model_flowers_classification.h5')
|
24 |
+
|
25 |
+
@app.route("/upload-image", methods=["POST"])
|
26 |
+
def upload_image():
|
27 |
+
# if request.method == "POST":
|
28 |
+
if request.files:
|
29 |
+
imag = request.files["image"]
|
30 |
+
try:
|
31 |
+
contents = imag.file.read()
|
32 |
+
with open(imag.filename, 'wb') as f:
|
33 |
+
f.write(contents)
|
34 |
+
except Exception:
|
35 |
+
return {"message": "There was an error uploading the file"}
|
36 |
+
finally:
|
37 |
+
imag.file.close()
|
38 |
+
print(imag)
|
39 |
+
classes = ['Lilly','Lotus','Orchid','Sunflower', 'Tulip']
|
40 |
+
img=image.load_img(str(imag.filename),target_size=(224,224))
|
41 |
+
x=image.img_to_array(img)
|
42 |
+
x=x/255
|
43 |
+
img_data=np.expand_dims(x,axis=0)
|
44 |
+
prediction = crop_disease_ml.predict(img_data)
|
45 |
+
predictions = list(prediction[0])
|
46 |
+
max_num = max(predictions)
|
47 |
+
index = predictions.index(max_num)
|
48 |
+
print(classes[index])
|
49 |
+
os.remove(str(imag.filename))
|
50 |
+
return {"output":classes[index]}
|
51 |
+
|
52 |
+
|
53 |
+
if __name__ =="__main__":
|
54 |
+
app.run()
|