panditamey commited on
Commit
9d942e2
·
1 Parent(s): 7990ed8

Rename api.py to app.py

Browse files
Files changed (2) hide show
  1. api.py +0 -55
  2. app.py +54 -0
api.py DELETED
@@ -1,55 +0,0 @@
1
- from fastapi import FastAPI,UploadFile,File
2
- from pydantic import BaseModel
3
- import pickle
4
- import json
5
- import pandas as pd
6
- from tensorflow.keras.models import load_model
7
- from tensorflow.keras.preprocessing import image
8
- from tensorflow.keras.applications.inception_v3 import preprocess_input
9
- import numpy as np
10
- import os
11
- import gdown
12
- import lightgbm as lgb
13
- from PIL import Image
14
-
15
- CHUNK_SIZE = 1024
16
-
17
- app = FastAPI(
18
- title='Flower Classification API',
19
- description='API for Flower Classification',
20
- )
21
-
22
- id = "1ry4L9L1-kyc79F1MnYMemJ5P81Gr_mHP"
23
- output = "model_flowers_classification.h5"
24
- gdown.download(id=id, output=output, quiet=False)
25
- # from zipfile import ZipFile
26
- # with ZipFile("modelcrops.zip", 'r') as zObject:
27
- # zObject.extractall(
28
- # path="")
29
-
30
-
31
- predict_ml=load_model('model_flowers_classification.h5')
32
-
33
-
34
- @app.post('/predict')
35
- async def flowerpredict(file: UploadFile = File(...)):
36
- try:
37
- contents = file.file.read()
38
- with open(file.filename, 'wb') as f:
39
- f.write(contents)
40
- except Exception:
41
- return {"message": "There was an error uploading the file"}
42
- finally:
43
- file.file.close()
44
- classes = ['Lilly','Lotus','Orchid','Sunflower', 'Tulip']
45
- img=image.load_img(str(file.filename),target_size=(224,224))
46
- x=image.img_to_array(img)
47
- x=x/255
48
- img_data=np.expand_dims(x,axis=0)
49
- prediction = predict_ml.predict(img_data)
50
- predictions = list(prediction[0])
51
- max_num = max(predictions)
52
- index = predictions.index(max_num)
53
- print(classes[index])
54
- os.remove(str(file.filename))
55
- return {"output":classes[index]}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from flask import Flask, request, jsonify ,render_template , redirect
2
+ from pydantic import BaseModel
3
+ import pickle
4
+ import json
5
+ import pandas as pd
6
+ from tensorflow.keras.models import load_model
7
+ from tensorflow.keras.preprocessing import image
8
+ from tensorflow.keras.applications.inception_v3 import preprocess_input
9
+ import numpy as np
10
+ import os
11
+ import gdown
12
+ import lightgbm as lgb
13
+ from PIL import Image
14
+
15
+
16
+ app = Flask(__name__)
17
+
18
+ id = "1ry4L9L1-kyc79F1MnYMemJ5P81Gr_mHP"
19
+ output = "model_flowers_classification.h5"
20
+ gdown.download(id=id, output=output, quiet=False)
21
+
22
+
23
+ crop_disease_ml=load_model('model_flowers_classification.h5')
24
+
25
+ @app.route("/upload-image", methods=["POST"])
26
+ def upload_image():
27
+ # if request.method == "POST":
28
+ if request.files:
29
+ imag = request.files["image"]
30
+ try:
31
+ contents = imag.file.read()
32
+ with open(imag.filename, 'wb') as f:
33
+ f.write(contents)
34
+ except Exception:
35
+ return {"message": "There was an error uploading the file"}
36
+ finally:
37
+ imag.file.close()
38
+ print(imag)
39
+ classes = ['Lilly','Lotus','Orchid','Sunflower', 'Tulip']
40
+ img=image.load_img(str(imag.filename),target_size=(224,224))
41
+ x=image.img_to_array(img)
42
+ x=x/255
43
+ img_data=np.expand_dims(x,axis=0)
44
+ prediction = crop_disease_ml.predict(img_data)
45
+ predictions = list(prediction[0])
46
+ max_num = max(predictions)
47
+ index = predictions.index(max_num)
48
+ print(classes[index])
49
+ os.remove(str(imag.filename))
50
+ return {"output":classes[index]}
51
+
52
+
53
+ if __name__ =="__main__":
54
+ app.run()