import gradio as gr import numpy as np import random import spaces # [uncomment to use ZeroGPU] from diffusers import DiffusionPipeline import torch device = "cuda" if torch.cuda.is_available() else "cpu" model_repo_id = "John6666/wai-real-mix-v10-sdxl" # Replace to the model you would like to use if torch.cuda.is_available(): torch_dtype = torch.float16 else: torch_dtype = torch.float32 pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) pipe = pipe.to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 # Specific prefixes for the prompt and negative prompt prompt_prefix = "score_9, score_8_up, score_7_up, source_photorealistic" negative_prompt_prefix = "score_6,score_5,score_4, worst quality, low quality, bad anatomy, bad hands, missing fingers, fewer digits, source_furry, source_pony, source_cartoon,3d, blurry" @spaces.GPU # [uncomment to use ZeroGPU] def infer( prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True), ): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) # Prepend the specific terms to the prompt and negative prompt full_prompt = f"{prompt_prefix}, {prompt}" full_negative_prompt = f"{negative_prompt_prefix}, {negative_prompt}" image = pipe( prompt=full_prompt, negative_prompt=full_negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, ).images[0] return image, seed, full_prompt, full_negative_prompt css = """ #col-container { margin: 0 auto; max-width: 640px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(" # Rainbow Media Realistic Generator") # Rename gr.Markdown(' ### Try an anime model') result = gr.Image(label="Result", show_label=False) prompt = gr.Text( label="Prompt", lines=3, placeholder="Enter your prompt", container=False, ) negative_prompt = gr.Text( label="Negative prompt", lines=3, placeholder="Enter a negative prompt", container=False, ) run_button = gr.Button("Run", variant="primary") with gr.Accordion("Advanced Settings", open=False): with gr.Row(): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, # Replace with defaults that work for your model ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, # Replace with defaults that work for your model ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=7.0, # Replace with defaults that work for your model ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=35, # Replace with defaults that work for your model ) # Add text outputs to show full prompt and negative prompt full_prompt_output = gr.Textbox(label="Full Prompt", interactive=False, lines=3) full_negative_prompt_output = gr.Textbox(label="Full Negative Prompt", interactive=False, lines=3) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[ prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, ], outputs=[result, seed, full_prompt_output, full_negative_prompt_output], ) if __name__ == "__main__": demo.launch()