import gradio as gr import tensorflow as tf import keras from keras.datasets import mnist import matplotlib.pyplot as plt (train_images, train_labels), (test_images, test_labels) = mnist.load_data() def get_digit(digit_choice): digit = train_images[digit_choice] fig = plt.figure() plt.imshow(digit) out_txt = "digit: %d" % digit_choice return fig, out_txt iface = gr.Interface( fn = get_digit, #inputs='image', #inputs=[gr.inputs.Image(label="Input Image", source="webcam")], inputs = [ gr.inputs.Dropdown([0, 1, 2, 3]) #gr.inputs.Number() #'text' ], #outputs='image', outputs=[gr.outputs.Image(type="plot"), 'text'], title='page title', description='page description' ) iface.launch()