Spaces:
Sleeping
Sleeping
paragon-analytics
commited on
Commit
·
64c5f29
1
Parent(s):
d8620b4
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import packages:
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import re
|
6 |
+
# tensorflow imports:
|
7 |
+
import tensorflow as tf
|
8 |
+
from tensorflow import keras
|
9 |
+
from tensorflow.keras import losses
|
10 |
+
from tensorflow.keras import layers
|
11 |
+
from tensorflow.keras.layers.experimental import preprocessing
|
12 |
+
from tensorflow.keras.optimizers import RMSprop
|
13 |
+
# # keras imports:
|
14 |
+
from keras.models import Model
|
15 |
+
from keras.layers import LSTM, Activation, Dense, Dropout, Input, Embedding, RepeatVector, TimeDistributed
|
16 |
+
from keras.preprocessing.text import Tokenizer
|
17 |
+
from keras_preprocessing import sequence
|
18 |
+
from tensorflow.keras.utils import to_categorical
|
19 |
+
from keras.callbacks import EarlyStopping
|
20 |
+
from keras.models import Sequential
|
21 |
+
from keras import layers
|
22 |
+
from keras.backend import clear_session
|
23 |
+
import pickle
|
24 |
+
import gradio as gr
|
25 |
+
import yake
|
26 |
+
import spacy
|
27 |
+
from spacy import displacy
|
28 |
+
import streamlit as st
|
29 |
+
import spacy_streamlit
|
30 |
+
nlp = spacy.load('en_core_web_sm')
|
31 |
+
|
32 |
+
kw_extractor = yake.KeywordExtractor()
|
33 |
+
custom_kw_extractor = yake.KeywordExtractor(lan="en", n=2, dedupLim=0.2, top=10, features=None)
|
34 |
+
|
35 |
+
max_words = 2000
|
36 |
+
max_len = 111
|
37 |
+
|
38 |
+
# load the model from disk
|
39 |
+
filename = 'resil_lstm_model.sav'
|
40 |
+
lmodel = pickle.load(open(filename, 'rb'))
|
41 |
+
|
42 |
+
# load the model from disk
|
43 |
+
filename = 'tokenizer.pickle'
|
44 |
+
tok = pickle.load(open(filename, 'rb'))
|
45 |
+
|
46 |
+
def process_final_text(text):
|
47 |
+
X_test = str(text).lower()
|
48 |
+
l = []
|
49 |
+
l.append(X_test)
|
50 |
+
test_sequences = tok.texts_to_sequences(l)
|
51 |
+
test_sequences_matrix = sequence.pad_sequences(test_sequences,maxlen=max_len)
|
52 |
+
lstm_prob = lmodel.predict(test_sequences_matrix.tolist()).flatten()
|
53 |
+
lstm_pred = np.where(lstm_prob>=0.5,1,0)
|
54 |
+
|
55 |
+
# Get Keywords:
|
56 |
+
keywords = custom_kw_extractor.extract_keywords(X_test)
|
57 |
+
letter = []
|
58 |
+
score = []
|
59 |
+
for i in keywords:
|
60 |
+
if i[1]>0.4:
|
61 |
+
a = "+++"
|
62 |
+
elif (i[1]<=0.4) and (i[1]>0.1):
|
63 |
+
a = "++"
|
64 |
+
elif (i[1]<=0.1) and (i[1]>0.01):
|
65 |
+
a = "+"
|
66 |
+
else:
|
67 |
+
a = "NA"
|
68 |
+
|
69 |
+
letter.append(i[0])
|
70 |
+
score.append(a)
|
71 |
+
|
72 |
+
keywords = [(letter[i], score[i]) for i in range(0, len(letter))]
|
73 |
+
|
74 |
+
# Get NER:
|
75 |
+
# NER:
|
76 |
+
doc = nlp(text)
|
77 |
+
sp_html = displacy.render(doc, style="ent", page=True, jupyter=False)
|
78 |
+
NER = (
|
79 |
+
""
|
80 |
+
+ sp_html
|
81 |
+
+ ""
|
82 |
+
)
|
83 |
+
return {"Resilience": float(lstm_prob[0]), "Non-Resilience": 1-float(lstm_prob[0])},keywords,NER
|
84 |
+
|
85 |
+
def main(prob1):
|
86 |
+
text = str(prob1)
|
87 |
+
obj = process_final_text(text)
|
88 |
+
return obj[0],obj[1],obj[2]
|
89 |
+
|
90 |
+
title = "Welcome to **ResText** 🪐"
|
91 |
+
description1 = """
|
92 |
+
Just add your text and hit Create & Analyze ✨
|
93 |
+
"""
|
94 |
+
|
95 |
+
description2 = """
|
96 |
+
Although encouraged, you don't have to fill all the boxes. Just try the ones that matter to you. After getting your first score, modify your answers and hit Create & Analyze again 🤞
|
97 |
+
"""
|
98 |
+
|
99 |
+
with gr.Blocks(title=title) as demo:
|
100 |
+
gr.Markdown(f"## {title}")
|
101 |
+
gr.Markdown("""![marketing](file/marketing.jpg)""")
|
102 |
+
gr.Markdown(description1)
|
103 |
+
gr.Markdown("""---""")
|
104 |
+
gr.Markdown(description2)
|
105 |
+
gr.Markdown("""---""")
|
106 |
+
prob1 = gr.Textbox(label="Enter Your Text Here:",lines=2, placeholder="Type it here ...")
|
107 |
+
submit_btn = gr.Button("Create & Analyze")
|
108 |
+
#text = gr.Textbox(label="Text:",lines=2, placeholder="Please enter text here ...")
|
109 |
+
#submit_btn2 = gr.Button("Analyze")
|
110 |
+
|
111 |
+
with gr.Column(visible=True) as output_col:
|
112 |
+
label = gr.Label(label = "Predicted Label")
|
113 |
+
impplot = gr.HighlightedText(label="Important Words", combine_adjacent=False).style(
|
114 |
+
color_map={"+++": "royalblue","++": "cornflowerblue",
|
115 |
+
"+": "lightsteelblue", "NA":"white"})
|
116 |
+
NER = gr.HTML(label = 'NER:')
|
117 |
+
|
118 |
+
submit_btn.click(
|
119 |
+
main,
|
120 |
+
[prob1],
|
121 |
+
[label,impplot,NER], api_name="ResTalk"
|
122 |
+
)
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
gr.Markdown("### Click on any of the examples below to see how it works:")
|
127 |
+
gr.Examples([["It is difficult to write persuasive product descriptions."], ["Talking to your friends about their problems with drugs and alcohol might not be easy."], ["When experiencing depression, I couldn't get out of bed or focus.", ["Up to 6 million homeless animals enter shelters nationwide every year."]], [prob1], [label,impplot,NER], main, cache_examples=True)
|
128 |
+
|
129 |
+
demo.launch()
|