File size: 25,413 Bytes
83b30a3
a65550c
 
165321e
83b30a3
 
a65550c
83b30a3
3eda1dd
83b30a3
a65550c
83b30a3
4687e09
a65550c
 
 
 
83b30a3
 
01179b1
 
 
 
 
 
a65550c
 
 
01179b1
 
 
 
 
83b30a3
8639c35
df3ebe1
ddd6d4d
 
a65550c
 
ddd6d4d
a65550c
83b30a3
 
 
 
 
 
 
 
 
 
2dcaff1
83b30a3
71e6b18
3e9ca50
 
 
 
436b14e
 
4eeba3f
3e9ca50
25c68f4
3e9ca50
3eda1dd
 
17c6e95
3eda1dd
3e9ca50
1ed5fd3
 
 
 
 
 
 
 
 
71e6b18
83b30a3
1ed5fd3
 
83b30a3
 
1ed5fd3
83b30a3
01179b1
3eda1dd
 
 
 
 
17c6e95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1815fe4
17c6e95
 
 
 
1815fe4
17c6e95
 
 
a65550c
01179b1
 
 
a65550c
 
83b30a3
 
 
 
 
 
a65550c
 
 
 
 
 
 
01179b1
a65550c
df3ebe1
 
6697fcb
 
a65550c
 
 
 
01179b1
 
 
 
 
a65550c
 
01179b1
a65550c
 
 
17c6e95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a65550c
 
01179b1
83b30a3
01179b1
83b30a3
 
 
 
 
a65550c
3eda1dd
83b30a3
 
3eda1dd
83b30a3
 
 
 
 
 
01179b1
15c4e1f
a65550c
 
 
 
 
 
83b30a3
a65550c
 
 
 
 
 
 
15c4e1f
274c497
 
 
 
 
 
 
8f53390
 
274c497
 
 
 
 
 
 
8f53390
 
274c497
 
 
 
 
15c4e1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83b30a3
a65550c
83b30a3
a65550c
 
 
 
83b30a3
a65550c
83b30a3
 
a65550c
83b30a3
a65550c
 
83b30a3
 
 
 
 
 
 
 
 
 
 
17c6e95
 
 
 
 
 
 
83b30a3
 
 
a65550c
17c6e95
7f2bb5b
17c6e95
 
 
 
26f02ba
 
 
 
 
 
 
 
 
 
 
 
 
17c6e95
26f02ba
 
17c6e95
26f02ba
 
 
 
 
 
 
52183c9
26f02ba
a65550c
83b30a3
4687e09
4eeba3f
17c6e95
 
01179b1
 
83b30a3
17c6e95
15c4e1f
a65550c
a35f45a
01179b1
83b30a3
a35f45a
 
 
 
17c6e95
a65550c
 
a35f45a
274c497
15c4e1f
 
 
3eda1dd
83b30a3
01179b1
3eda1dd
a35f45a
 
a65550c
01179b1
a35f45a
83b30a3
15c4e1f
274c497
 
 
 
 
 
 
 
 
3eda1dd
83b30a3
a35f45a
 
 
 
eb138a3
a35f45a
3eda1dd
a35f45a
3eda1dd
a35f45a
 
3eda1dd
a35f45a
 
 
 
 
 
eb138a3
a35f45a
 
 
 
 
 
 
eb138a3
a35f45a
 
 
 
 
 
83b30a3
15c4e1f
 
 
 
 
 
 
 
83b30a3
15c4e1f
 
 
83b30a3
a65550c
15c4e1f
17c6e95
83b30a3
 
a65550c
83b30a3
a65550c
 
 
83b30a3
738f600
83b30a3
 
01179b1
 
 
 
 
a65550c
01179b1
 
 
17c6e95
e2029e4
83b30a3
e2029e4
83b30a3
 
 
 
7383108
 
83b30a3
 
 
7383108
83b30a3
4eeba3f
 
 
83b30a3
 
15c4e1f
01179b1
3eda1dd
83b30a3
 
 
 
7f8e5de
 
17c6e95
83b30a3
 
4d6e62d
17c6e95
 
83b30a3
3eda1dd
 
 
6697fcb
3eda1dd
 
83b30a3
3eda1dd
83b30a3
3eda1dd
3e9ca50
 
 
4eeba3f
3e9ca50
 
 
 
 
 
 
 
4eeba3f
3e9ca50
 
 
83b30a3
01179b1
83b30a3
 
 
 
 
 
 
 
 
 
01179b1
83b30a3
 
df3ebe1
 
01179b1
4eeba3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01179b1
6697fcb
01179b1
 
 
 
 
83b30a3
01179b1
 
83b30a3
01179b1
 
 
a35f45a
01179b1
 
5720255
01179b1
 
83b30a3
01179b1
83b30a3
 
3bf709c
 
 
 
 
 
a3290cd
 
 
476eb9e
 
 
 
 
a3290cd
 
 
476eb9e
 
 
 
 
a3290cd
 
 
476eb9e
 
 
 
 
a3290cd
 
 
476eb9e
 
 
 
 
a3290cd
 
 
476eb9e
 
 
 
 
a3290cd
 
 
476eb9e
 
 
 
 
a3290cd
 
 
476eb9e
 
 
 
 
 
 
 
 
a3290cd
 
83b30a3
 
a35f45a
83b30a3
a35f45a
 
 
 
 
 
 
 
 
 
274c497
a35f45a
 
 
01179b1
8639c35
 
 
 
17c6e95
 
 
 
4d02823
83b30a3
01179b1
83b30a3
01179b1
a65550c
17c6e95
 
 
 
 
 
 
 
 
a65550c
b5a3831
71e6b18
a65550c
 
01179b1
a65550c
 
 
01179b1
6697fcb
01179b1
a65550c
 
 
 
3eda1dd
 
2ed44c5
a65550c
 
 
01179b1
a65550c
05d4795
a65550c
01179b1
4687e09
 
 
17c6e95
df3ebe1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
# from .demo_modelpart import InferenceDemo
import gradio as gr
import os
from threading import Thread

# import time
import cv2

import datetime
# import copy
import torch

import spaces
import numpy as np

from llava import conversation as conversation_lib
from llava.constants import DEFAULT_IMAGE_TOKEN


from llava.constants import (
    IMAGE_TOKEN_INDEX,
    DEFAULT_IMAGE_TOKEN,
    DEFAULT_IM_START_TOKEN,
    DEFAULT_IM_END_TOKEN,
)
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.builder import load_pretrained_model
from llava.utils import disable_torch_init
from llava.mm_utils import (
    tokenizer_image_token,
    get_model_name_from_path,
    KeywordsStoppingCriteria,
)

from serve_constants import html_header, bibtext, learn_more_markdown, tos_markdown

from decord import VideoReader, cpu

import requests
from PIL import Image
import io
from io import BytesIO
from transformers import TextStreamer, TextIteratorStreamer

import hashlib
import PIL
import base64
import json

import datetime
import gradio as gr
import gradio_client
import subprocess
import sys

from huggingface_hub import HfApi
from huggingface_hub import login
from huggingface_hub import revision_exists

login(token=os.environ["HF_TOKEN"],
      write_permission=True)

api = HfApi()
repo_name = os.environ["LOG_REPO"]

external_log_dir = "./logs"
LOGDIR = external_log_dir
VOTEDIR = "./votes"


def install_gradio_4_35_0():
    current_version = gr.__version__
    if current_version != "4.35.0":
        print(f"Current Gradio version: {current_version}")
        print("Installing Gradio 4.35.0...")
        subprocess.check_call([sys.executable, "-m", "pip", "install", "gradio==4.35.0", "--force-reinstall"])
        print("Gradio 4.35.0 installed successfully.")
    else:
        print("Gradio 4.35.0 is already installed.")

# Call the function to install Gradio 4.35.0 if needed
install_gradio_4_35_0()

import gradio as gr
import gradio_client
print(f"Gradio version: {gr.__version__}")
print(f"Gradio-client version: {gradio_client.__version__}")

def get_conv_log_filename():
    t = datetime.datetime.now()
    name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-user_conv.json")
    return name

def get_conv_vote_filename():
    t = datetime.datetime.now()
    name = os.path.join(VOTEDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-user_vote.json")
    if not os.path.isfile(name):
        os.makedirs(os.path.dirname(name), exist_ok=True)
    return name

def vote_last_response(state, vote_type, model_selector):
    with open(get_conv_vote_filename(), "a") as fout:
        data = {
            "type": vote_type,
            "model": model_selector,
            "state": state,
        }
        fout.write(json.dumps(data) + "\n")
    api.upload_file(
        path_or_fileobj=get_conv_vote_filename(),
        path_in_repo=get_conv_vote_filename().replace("./votes/", ""),
        repo_id=repo_name,
        repo_type="dataset")


def upvote_last_response(state):
    vote_last_response(state, "upvote", "MAmmoTH-VL-8b")
    gr.Info("Thank you for your voting!")
    return state

def downvote_last_response(state):
    vote_last_response(state, "downvote", "MAmmoTH-VL-8b")
    gr.Info("Thank you for your voting!")
    return state

class InferenceDemo(object):
    def __init__(
        self, args, model_path, tokenizer, model, image_processor, context_len
    ) -> None:
        disable_torch_init()

        self.tokenizer, self.model, self.image_processor, self.context_len = (
            tokenizer,
            model,
            image_processor,
            context_len,
        )

        if "llama-2" in model_name.lower():
            conv_mode = "llava_llama_2"
        elif "v1" in model_name.lower():
            conv_mode = "llava_v1"
        elif "mpt" in model_name.lower():
            conv_mode = "mpt"
        elif "qwen" in model_name.lower():
            conv_mode = "qwen_1_5"
        elif "pangea" in model_name.lower():
            conv_mode = "qwen_1_5"
        elif "mammoth-vl" in model_name.lower():
            conv_mode = "qwen_2_5"
        else:
            conv_mode = "llava_v0"

        if args.conv_mode is not None and conv_mode != args.conv_mode:
            print(
                "[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}".format(
                    conv_mode, args.conv_mode, args.conv_mode
                )
            )
        else:
            args.conv_mode = conv_mode
        self.conv_mode = conv_mode
        self.conversation = conv_templates[args.conv_mode].copy()
        self.num_frames = args.num_frames

class ChatSessionManager:
    def __init__(self):
        self.chatbot_instance = None

    def initialize_chatbot(self, args, model_path, tokenizer, model, image_processor, context_len):
        self.chatbot_instance = InferenceDemo(args, model_path, tokenizer, model, image_processor, context_len)
        print(f"Initialized Chatbot instance with ID: {id(self.chatbot_instance)}")

    def reset_chatbot(self):
        self.chatbot_instance = None

    def get_chatbot(self, args, model_path, tokenizer, model, image_processor, context_len):
        if self.chatbot_instance is None:
            self.initialize_chatbot(args, model_path, tokenizer, model, image_processor, context_len)
        return self.chatbot_instance
        

def is_valid_video_filename(name):
    video_extensions = ["avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg"]

    ext = name.split(".")[-1].lower()

    if ext in video_extensions:
        return True
    else:
        return False

def is_valid_image_filename(name):
    image_extensions = ["jpg", "jpeg", "png", "bmp", "gif", "tiff", "webp", "heic", "heif", "jfif", "svg", "eps", "raw"] 

    ext = name.split(".")[-1].lower()

    if ext in image_extensions:
        return True
    else:
        return False


def sample_frames_v1(video_file, num_frames):
    video = cv2.VideoCapture(video_file)
    total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
    interval = total_frames // num_frames
    frames = []
    for i in range(total_frames):
        ret, frame = video.read()
        pil_img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
        if not ret:
            continue
        if i % interval == 0:
            frames.append(pil_img)
    video.release()
    return frames

def sample_frames_v2(video_path, frame_count=32):
    video_frames = []
    vr = VideoReader(video_path, ctx=cpu(0))
    total_frames = len(vr)
    frame_interval = max(total_frames // frame_count, 1)

    for i in range(0, total_frames, frame_interval):
        frame = vr[i].asnumpy()
        frame_image = Image.fromarray(frame)  # Convert to PIL.Image
        video_frames.append(frame_image)
        if len(video_frames) >= frame_count:
            break

    # Ensure at least one frame is returned if total frames are less than required
    if len(video_frames) < frame_count and total_frames > 0:
        for i in range(total_frames):
            frame = vr[i].asnumpy()
            frame_image = Image.fromarray(frame)  # Convert to PIL.Image
            video_frames.append(frame_image)
            if len(video_frames) >= frame_count:
                break

    return video_frames

def sample_frames(video_path, num_frames=8):
    cap = cv2.VideoCapture(video_path)
    frames = []
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    indices = np.linspace(0, total_frames - 1, num_frames, dtype=int)

    for i in indices:
        cap.set(cv2.CAP_PROP_POS_FRAMES, i)
        ret, frame = cap.read()
        if ret:
            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            frames.append(Image.fromarray(frame))

    cap.release()
    return frames


def load_image(image_file):
    if image_file.startswith("http") or image_file.startswith("https"):
        response = requests.get(image_file)
        if response.status_code == 200:
            image = Image.open(BytesIO(response.content)).convert("RGB")
        else:
            print("failed to load the image")
    else:
        print("Load image from local file")
        print(image_file)
        image = Image.open(image_file).convert("RGB")

    return image


def clear_response(history):
    for index_conv in range(1, len(history)):
        # loop until get a text response from our model.
        conv = history[-index_conv]
        if not (conv[0] is None):
            break
    question = history[-index_conv][0]
    history = history[:-index_conv]
    return history, question

chat_manager = ChatSessionManager()


def clear_history(history):
    chatbot_instance = chat_manager.get_chatbot(args, model_path, tokenizer, model, image_processor, context_len)
    chatbot_instance.conversation = conv_templates[chatbot_instance.conv_mode].copy()
    return None



def add_message(history, message):
    global chat_image_num
    print("#### len(history)",len(history))
    if not history:
        history = []
        our_chatbot = chat_manager.get_chatbot(args, model_path, tokenizer, model, image_processor, context_len)
        chat_image_num = 0
    
    # if len(message["files"]) <= 1:
    #     for x in message["files"]:
    #         history.append(((x,), None))
    #         chat_image_num += 1
    #     if chat_image_num > 1:
    #         history = []
    #         chat_manager.reset_chatbot()
    #         our_chatbot = chat_manager.get_chatbot(args, model_path, tokenizer, model, image_processor, context_len)
    #         chat_image_num = 0
    #         for x in message["files"]:
    #             history.append(((x,), None))
    #             chat_image_num += 1
                
    #     if message["text"] is not None:
    #         history.append((message["text"], None))
        
    #     print(f"### Chatbot instance ID: {id(our_chatbot)}")
    #     return history, gr.MultimodalTextbox(value=None, interactive=False)
    # else:
    for x in message["files"]:
        history.append(((x,), None))
    if message["text"] is not None:
        history.append((message["text"], None))
    # print(f"### Chatbot instance ID: {id(our_chatbot)}")
    return history, gr.MultimodalTextbox(value=None, interactive=False)


@spaces.GPU
def bot(history, temperature, top_p, max_output_tokens):
    our_chatbot = chat_manager.get_chatbot(args, model_path, tokenizer, model, image_processor, context_len)
    print(f"### Chatbot instance ID: {id(our_chatbot)}")
    text = history[-1][0]
    images_this_term = []
    text_this_term = ""
    
    is_video = False
    num_new_images = 0
    # previous_image = False
    for i, message in enumerate(history[:-1]):
        if type(message[0]) is tuple:
            # if previous_image:
            #     gr.Warning("Only one image can be uploaded in a conversation. Please reduce the number of images and start a new conversation.")
            #     our_chatbot.conversation = conv_templates[our_chatbot.conv_mode].copy()
            #     return None
           
            images_this_term.append(message[0][0])
            if is_valid_video_filename(message[0][0]):
                # raise ValueError("Video is not supported")
                # num_new_images += our_chatbot.num_frames
                # num_new_images += len(sample_frames(message[0][0], our_chatbot.num_frames))
                num_new_images += 1
                is_video = True
            elif is_valid_image_filename(message[0][0]):
                print("#### Load image from local file",message[0][0])
                num_new_images += 1
            else:
                raise ValueError("Invalid file format")
            # previous_image = True
        else:
            num_new_images = 0
            # previous_image = False

    
    image_list = []
    for f in images_this_term:
        if is_valid_video_filename(f):
            image_list += sample_frames(f, our_chatbot.num_frames)
        elif is_valid_image_filename(f):
            image_list.append(load_image(f))
        else:
            raise ValueError("Invalid image file")

    all_image_hash = []
    all_image_path = []
    for file_path in images_this_term:
        with open(file_path, "rb") as file:
            file_data = file.read()
            file_hash = hashlib.md5(file_data).hexdigest()
            all_image_hash.append(file_hash)
            
            t = datetime.datetime.now()
            output_dir = os.path.join(
                LOGDIR,
                "serve_files",
                f"{t.year}-{t.month:02d}-{t.day:02d}"
            )
            os.makedirs(output_dir, exist_ok=True)
            
            if is_valid_image_filename(file_path):
                # Process and save images
                image = Image.open(file_path).convert("RGB")
                filename = os.path.join(output_dir, f"{file_hash}.jpg")
                all_image_path.append(filename)
                if not os.path.isfile(filename):
                    print("Image saved to", filename)
                    image.save(filename)
    
            elif is_valid_video_filename(file_path):
                # Simplified video saving
                filename = os.path.join(output_dir, f"{file_hash}.mp4")
                all_image_path.append(filename)
                if not os.path.isfile(filename):
                    print("Video saved to", filename)
                    os.makedirs(os.path.dirname(filename), exist_ok=True)
                    # Directly copy the video file
                    with open(file_path, "rb") as src, open(filename, "wb") as dst:
                        dst.write(src.read())
    
    if not is_video:
        image_tensor = [
            our_chatbot.image_processor.preprocess(f, return_tensors="pt")["pixel_values"][
                0
            ]
            .half()
            .to(our_chatbot.model.device)
            for f in image_list
        ]
        image_tensor = torch.stack(image_tensor)
    else:
        image_tensor = our_chatbot.image_processor.preprocess(image_list, return_tensors="pt")["pixel_values"].half().to(our_chatbot.model.device)


    image_token = DEFAULT_IMAGE_TOKEN * num_new_images if not is_video else DEFAULT_IMAGE_TOKEN * num_new_images
    
    inp = text
    inp = image_token + "\n" + inp
    our_chatbot.conversation.append_message(our_chatbot.conversation.roles[0], inp)
    # image = None
    our_chatbot.conversation.append_message(our_chatbot.conversation.roles[1], None)
    prompt = our_chatbot.conversation.get_prompt()

    input_ids = tokenizer_image_token(
            prompt, our_chatbot.tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt"
        ).unsqueeze(0).to(our_chatbot.model.device)
    # print("### input_id",input_ids)
    stop_str = (
        our_chatbot.conversation.sep
        if our_chatbot.conversation.sep_style != SeparatorStyle.TWO
        else our_chatbot.conversation.sep2
    )
    keywords = [stop_str]
    stopping_criteria = KeywordsStoppingCriteria(
        keywords, our_chatbot.tokenizer, input_ids
    )
    
    streamer = TextIteratorStreamer(
        our_chatbot.tokenizer, skip_prompt=True, skip_special_tokens=True
    )
    print(our_chatbot.model.device)
    print(input_ids.device)
    print(image_tensor.device)
    
    
    
    generate_kwargs = dict(
        inputs=input_ids,
        streamer=streamer,
        images=[image_tensor] if is_video else image_tensor,
        do_sample=True,
        temperature=temperature,
        top_p=top_p,
        max_new_tokens=max_output_tokens,
        use_cache=False,
        stopping_criteria=[stopping_criteria],
        modalities=["video"] if is_video else ["image"]
    )
    
    t = Thread(target=our_chatbot.model.generate, kwargs=generate_kwargs)
    t.start()
    
    outputs = []
    for stream_token in streamer:
        outputs.append(stream_token)
        
        history[-1] = [text, "".join(outputs)]
        yield history
    our_chatbot.conversation.messages[-1][-1] = "".join(outputs)
    # print("### turn end history", history)
    # print("### turn end conv",our_chatbot.conversation)
        
    with open(get_conv_log_filename(), "a") as fout:
        data = {
            "type": "chat",
            "model": "MAmmoTH-VL-8b",
            "state": history,
            "images": all_image_hash,
            "images_path": all_image_path
        }
        print("#### conv log",data)
        fout.write(json.dumps(data) + "\n")
    for upload_img in all_image_path:
        api.upload_file(
            path_or_fileobj=upload_img,
            path_in_repo=upload_img.replace("./logs/", ""),
            repo_id=repo_name,
            repo_type="dataset",
            # revision=revision,
            # ignore_patterns=["data*"]
        )
    # upload json
    api.upload_file(
        path_or_fileobj=get_conv_log_filename(),
        path_in_repo=get_conv_log_filename().replace("./logs/", ""),
        repo_id=repo_name,
        repo_type="dataset")
        
    

txt = gr.Textbox(
    scale=4,
    show_label=False,
    placeholder="Enter text and press enter.",
    container=False,
)

with gr.Blocks(
    css=".message-wrap.svelte-1lcyrx4>div.svelte-1lcyrx4  img {min-width: 40px}",
) as demo:

    cur_dir = os.path.dirname(os.path.abspath(__file__))
    # gr.Markdown(title_markdown)
    gr.HTML(html_header)
    
    with gr.Column():
        with gr.Accordion("Parameters", open=False) as parameter_row:
                temperature = gr.Slider(
                    minimum=0.0,
                    maximum=1.0,
                    value=0.7,
                    step=0.1,
                    interactive=True,
                    label="Temperature",
                )
                top_p = gr.Slider(
                    minimum=0.0,
                    maximum=1.0,
                    value=1,
                    step=0.1,
                    interactive=True,
                    label="Top P",
                )
                max_output_tokens = gr.Slider(
                    minimum=0,
                    maximum=8192,
                    value=4096,
                    step=256,
                    interactive=True,
                    label="Max output tokens",
                )
        with gr.Row():
            chatbot = gr.Chatbot([], elem_id="MAmmoTH-VL-8B", bubble_full_width=False, height=750)

        with gr.Row():
            upvote_btn = gr.Button(value="👍  Upvote", interactive=True)
            downvote_btn = gr.Button(value="👎  Downvote", interactive=True)
            flag_btn = gr.Button(value="⚠️  Flag", interactive=True)
            # stop_btn = gr.Button(value="⏹️  Stop Generation", interactive=True)
            regenerate_btn = gr.Button(value="🔄  Regenerate", interactive=True)
            clear_btn = gr.Button(value="🗑️  Clear history", interactive=True)
            

        chat_input = gr.MultimodalTextbox(
            interactive=True,
            file_types=["image", "video"],
            placeholder="Enter message or upload file...",
            show_label=False,
            submit_btn="🚀"
        )

        print(cur_dir)
        gr.Examples(
                examples_per_page=20,
                examples=[
                    [
                        {
                            "files": [
                                f"{cur_dir}/examples/172197131626056_P7966202.png",
                            ],
                            "text": "Why this image funny?",
                        }
                    ],
                    [    
                        {
                            "files": [
                                f"{cur_dir}/examples/realcase_doc.png",
                            ],
                            "text": "Read text in the image",
                        }
                    ],
                    [
                        {
                            "files": [
                                f"{cur_dir}/examples/realcase_weather.jpg",
                            ],
                            "text": "List the weather for Monday to Friday",
                        }
                    ],
                    [
                        {
                            "files": [
                                f"{cur_dir}/examples/realcase_knowledge.jpg",
                            ],
                            "text": "Answer the following question based on the provided image: What country do these planes belong to?",
                        }
                    ],
                    [
                        {
                            "files": [
                                f"{cur_dir}/examples/realcase_math.jpg",
                            ],
                            "text": "Find the measure of angle 3.",
                        }
                    ],
                    [
                        {
                            "files": [
                                f"{cur_dir}/examples/realcase_interact.jpg",
                            ],
                            "text": "Please perfectly describe this cartoon illustration in as much detail as possible",
                        }
                    ],
                    [
                        {
                            "files": [
                                f"{cur_dir}/examples/realcase_perfer.jpg",
                            ],
                            "text": "This is an image of a room. It could either be a real image captured in the room or a rendered image from a 3D scene reconstruction technique that is trained using real images of the room. A rendered image usually contains some visible artifacts (eg. blurred regions due to under-reconstructed areas) that do not faithfully represent the actual scene. You need to decide if its a real image or a rendered image by giving each image a photorealism score between 1 and 5.",
                        }
                    ],
                    [
                        {
                            "files": [
                                f"{cur_dir}/examples/realcase_multi1.png",
                                f"{cur_dir}/examples/realcase_multi2.png",
                                f"{cur_dir}/examples/realcase_multi3.png",
                                f"{cur_dir}/examples/realcase_multi4.png",
                                f"{cur_dir}/examples/realcase_multi5.png",
                            ],
                            "text": "Based on the five species in the images, draw a food chain. Explain the role of each species in the food chain.",
                        }
                    ],
                ],
                inputs=[chat_input],
                label="Real World Image Cases",
            )
        gr.Examples(
            examples=[
                [
                    {
                        "files": [
                            f"{cur_dir}/examples/realcase_video.mp4",
                        ],
                        "text": "Please describe the video in detail.",
                    },
                ]
            ],
            inputs=[chat_input],
            label="Real World Video Case"
        )

        gr.Markdown(tos_markdown)
        gr.Markdown(learn_more_markdown)
        gr.Markdown(bibtext)

    chat_input.submit(
    add_message, [chatbot, chat_input], [chatbot, chat_input]
    ).then(bot, [chatbot, temperature, top_p, max_output_tokens], chatbot, api_name="bot_response").then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input])
  

    # chatbot.like(print_like_dislike, None, None)
    clear_btn.click(
        fn=clear_history, inputs=[chatbot], outputs=[chatbot], api_name="clear_all"
    )

    upvote_btn.click(
        fn=upvote_last_response, inputs=chatbot, outputs=chatbot, api_name="upvote_last_response"
    )

    
    downvote_btn.click(
        fn=downvote_last_response, inputs=chatbot, outputs=chatbot, api_name="upvote_last_response"
    )


demo.queue()
    
if __name__ == "__main__":
    import argparse

    argparser = argparse.ArgumentParser()
    argparser.add_argument("--server_name", default="0.0.0.0", type=str)
    argparser.add_argument("--port", default="6123", type=str)
    argparser.add_argument(
        "--model_path", default="MMSFT/MAmmoTH-VL-8B", type=str
    )
    # argparser.add_argument("--model-path", type=str, default="facebook/opt-350m")
    argparser.add_argument("--model-base", type=str, default=None)
    argparser.add_argument("--num-gpus", type=int, default=1)
    argparser.add_argument("--conv-mode", type=str, default=None)
    argparser.add_argument("--temperature", type=float, default=0.7)
    argparser.add_argument("--max-new-tokens", type=int, default=4096)
    argparser.add_argument("--num_frames", type=int, default=32)
    argparser.add_argument("--load-8bit", action="store_true")
    argparser.add_argument("--load-4bit", action="store_true")
    argparser.add_argument("--debug", action="store_true")

    args = argparser.parse_args()

    model_path = args.model_path
    filt_invalid = "cut"
    model_name = get_model_name_from_path(args.model_path)
    tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit)
    model=model.to(torch.device('cuda'))
    chat_image_num = 0
    demo.launch()