File size: 4,896 Bytes
a65550c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
#    Copyright 2023 Haotian Liu
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.


from typing import List, Optional, Tuple, Union

import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss

from transformers import AutoConfig, AutoModelForCausalLM, MixtralConfig, MixtralModel, MixtralForCausalLM, GenerationConfig

from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.generation.utils import GenerateOutput

from ..llava_arch import LlavaMetaModel, LlavaMetaForCausalLM


class LlavaMixtralConfig(MixtralConfig):
    model_type = "llava_mixtral"


class LlavaMixtralModel(LlavaMetaModel, MixtralModel):
    config_class = LlavaMixtralConfig

    def __init__(self, config: MixtralConfig):
        super(LlavaMixtralModel, self).__init__(config)


class LlavaMixtralForCausalLM(MixtralForCausalLM, LlavaMetaForCausalLM):
    config_class = LlavaMixtralConfig

    def __init__(self, config):
        super(MixtralForCausalLM, self).__init__(config)

        config.model_type = "llava_mixtral"
        config.rope_scaling = None
        self.model = LlavaMixtralModel(config)
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        # Initialize weights and apply final processing
        self.post_init()

    def get_model(self):
        return self.model

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        images: Optional[torch.FloatTensor] = None,
        image_sizes: Optional[List[List[int]]] = None,
        return_dict: Optional[bool] = None,
        cache_position=None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:

        if inputs_embeds is None:
            (input_ids, position_ids, attention_mask, past_key_values, inputs_embeds, labels) = self.prepare_inputs_labels_for_multimodal(input_ids, position_ids, attention_mask, past_key_values, labels, images, image_sizes)

        return super().forward(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            labels=labels,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

    @torch.no_grad()
    def generate(
        self,
        inputs: Optional[torch.Tensor] = None,
        images: Optional[torch.Tensor] = None,
        image_sizes: Optional[torch.Tensor] = None,
        **kwargs,
    ) -> Union[GenerateOutput, torch.LongTensor]:
        position_ids = kwargs.pop("position_ids", None)
        attention_mask = kwargs.pop("attention_mask", None)
        if "inputs_embeds" in kwargs:
            raise NotImplementedError("`inputs_embeds` is not supported")

        if images is not None:
            (inputs, position_ids, attention_mask, _, inputs_embeds, _) = self.prepare_inputs_labels_for_multimodal(inputs, position_ids, attention_mask, None, None, images, image_sizes=image_sizes)
        else:
            inputs_embeds = self.get_model().embed_tokens(inputs)

        return super().generate(position_ids=position_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, **kwargs)

    def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
        images = kwargs.pop("images", None)
        image_sizes = kwargs.pop("image_sizes", None)
        inputs = super().prepare_inputs_for_generation(input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs)
        if images is not None:
            inputs["images"] = images
        if image_sizes is not None:
            inputs["image_sizes"] = image_sizes
        return inputs


AutoConfig.register("llava_mixtral", LlavaMixtralConfig)
AutoModelForCausalLM.register(LlavaMixtralConfig, LlavaMixtralForCausalLM)