Spaces:
Runtime error
Runtime error
""" | |
Taken from https://github.com/lucidrains/flamingo-pytorch | |
""" | |
import torch | |
from einops import rearrange, repeat | |
try: | |
from einops_exts import rearrange_many | |
except: | |
pass | |
from torch import einsum, nn | |
def exists(val): | |
return val is not None | |
def FeedForward(dim, mult=4): | |
inner_dim = int(dim * mult) | |
return nn.Sequential( | |
nn.LayerNorm(dim), | |
nn.Linear(dim, inner_dim, bias=False), | |
nn.GELU(), | |
nn.Linear(inner_dim, dim, bias=False), | |
) | |
class PerceiverAttention(nn.Module): | |
def __init__(self, *, dim, dim_head=64, heads=8): | |
super().__init__() | |
self.scale = dim_head**-0.5 | |
self.heads = heads | |
inner_dim = dim_head * heads | |
self.norm_media = nn.LayerNorm(dim) | |
self.norm_latents = nn.LayerNorm(dim) | |
self.to_q = nn.Linear(dim, inner_dim, bias=False) | |
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False) | |
self.to_out = nn.Linear(inner_dim, dim, bias=False) | |
def forward(self, x, latents): | |
""" | |
Args: | |
x (torch.Tensor): image features | |
shape (b, T, n1, D) | |
latent (torch.Tensor): latent features | |
shape (b, T, n2, D) | |
""" | |
x = self.norm_media(x) | |
latents = self.norm_latents(latents) | |
h = self.heads | |
q = self.to_q(latents) | |
kv_input = torch.cat((x, latents), dim=-2) | |
k, v = self.to_kv(kv_input).chunk(2, dim=-1) | |
q, k, v = rearrange_many((q, k, v), "b t n (h d) -> b h t n d", h=h) | |
q = q * self.scale | |
# attention | |
sim = einsum("... i d, ... j d -> ... i j", q, k) | |
sim = sim - sim.amax(dim=-1, keepdim=True).detach() | |
attn = sim.softmax(dim=-1) | |
out = einsum("... i j, ... j d -> ... i d", attn, v) | |
out = rearrange(out, "b h t n d -> b t n (h d)", h=h) | |
return self.to_out(out) | |
class PerceiverResamplerModule(nn.Module): | |
def __init__( | |
self, | |
*, | |
dim, | |
depth=6, | |
dim_head=64, | |
heads=8, | |
num_latents=64, | |
max_num_media=None, | |
max_num_frames=None, | |
ff_mult=4, | |
): | |
super().__init__() | |
self.latents = nn.Parameter(torch.randn(num_latents, dim)) | |
self.frame_embs = nn.Parameter(torch.randn(max_num_frames, dim)) if exists(max_num_frames) else None | |
self.media_time_embs = nn.Parameter(torch.randn(max_num_media, 1, dim)) if exists(max_num_media) else None | |
self.layers = nn.ModuleList([]) | |
for _ in range(depth): | |
self.layers.append( | |
nn.ModuleList( | |
[ | |
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads), | |
FeedForward(dim=dim, mult=ff_mult) if ff_mult > 0 else nn.Identity(), | |
] | |
) | |
) | |
self.norm = nn.LayerNorm(dim) | |
def forward(self, x): | |
""" | |
Args: | |
x (torch.Tensor): image features | |
shape (b, T, F, v, D) | |
Returns: | |
shape (b, T, n, D) where n is self.num_latents | |
""" | |
b, T, F, v = x.shape[:4] | |
# frame and media time embeddings | |
if exists(self.frame_embs): | |
frame_embs = repeat(self.frame_embs[:F], "F d -> b T F v d", b=b, T=T, v=v) | |
x = x + frame_embs | |
x = rearrange(x, "b T F v d -> b T (F v) d") # flatten the frame and spatial dimensions | |
if exists(self.media_time_embs): | |
x = x + self.media_time_embs[:T] | |
# blocks | |
latents = repeat(self.latents, "n d -> b T n d", b=b, T=T) | |
for attn, ff in self.layers: | |
latents = attn(x, latents) + latents | |
latents = ff(latents) + latents | |
return self.norm(latents) | |
class PerceiverResampler(nn.Module): | |
def __init__(self, model_args, vision_tower): | |
super().__init__() | |
self.depth = model_args.mm_perceiver_depth | |
self.num_latents = model_args.mm_perceiver_latents | |
self.ff_mult = model_args.mm_perceiver_ff_mult | |
self.pretrained = model_args.mm_perceiver_pretrained | |
self.perceiver = PerceiverResamplerModule(dim=vision_tower.hidden_size, depth=self.depth, num_latents=self.num_latents, ff_mult=self.ff_mult) | |
if self.pretrained is not None: | |
self.load_state_dict(torch.load(self.pretrained)) | |
def forward(self, image_features, *args, **kwargs): | |
return self.perceiver(image_features[:, None, None]).squeeze(1) | |
def config(self): | |
return { | |
"mm_resampler_type": "perceiver", | |
"mm_perceiver_depth": self.depth, | |
"mm_perceiver_latents": self.num_latents, | |
"mm_perceiver_ff_mult": self.ff_mult, | |
"mm_perceiver_pretrained": self.pretrained, | |
} | |