Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -39,6 +39,10 @@ from PIL import Image
|
|
39 |
from io import BytesIO
|
40 |
from transformers import TextStreamer, TextIteratorStreamer
|
41 |
|
|
|
|
|
|
|
|
|
42 |
import gradio as gr
|
43 |
import gradio_client
|
44 |
import subprocess
|
@@ -226,25 +230,9 @@ def bot(history):
|
|
226 |
assert len(images_this_term) > 0, "must have an image"
|
227 |
# image_files = (args.image_file).split(',')
|
228 |
# image = [load_image(f) for f in images_this_term if f]
|
229 |
-
|
230 |
-
for f in images_this_term:
|
231 |
-
if is_valid_video_filename(f):
|
232 |
-
image_list += sample_frames(f, our_chatbot.num_frames)
|
233 |
-
elif is_valid_image_filename(f):
|
234 |
-
image_list.append(load_image(f))
|
235 |
-
else:
|
236 |
-
raise ValueError("Invalid image file")
|
237 |
-
|
238 |
-
image_tensor = [
|
239 |
-
our_chatbot.image_processor.preprocess(f, return_tensors="pt")["pixel_values"][
|
240 |
-
0
|
241 |
-
]
|
242 |
-
.half()
|
243 |
-
.to(our_chatbot.model.device)
|
244 |
-
for f in image_list
|
245 |
-
]
|
246 |
all_image_hash = []
|
247 |
-
for image_path in
|
248 |
with open(image_path, "rb") as image_file:
|
249 |
image_data = image_file.read()
|
250 |
image_hash = hashlib.md5(image_data).hexdigest()
|
@@ -261,6 +249,25 @@ def bot(history):
|
|
261 |
if not os.path.isfile(filename):
|
262 |
os.makedirs(os.path.dirname(filename), exist_ok=True)
|
263 |
image.save(filename)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
|
265 |
image_tensor = torch.stack(image_tensor)
|
266 |
image_token = DEFAULT_IMAGE_TOKEN * num_new_images
|
|
|
39 |
from io import BytesIO
|
40 |
from transformers import TextStreamer, TextIteratorStreamer
|
41 |
|
42 |
+
import hashlib
|
43 |
+
import PIL
|
44 |
+
import base64
|
45 |
+
|
46 |
import gradio as gr
|
47 |
import gradio_client
|
48 |
import subprocess
|
|
|
230 |
assert len(images_this_term) > 0, "must have an image"
|
231 |
# image_files = (args.image_file).split(',')
|
232 |
# image = [load_image(f) for f in images_this_term if f]
|
233 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
all_image_hash = []
|
235 |
+
for image_path in images_this_term:
|
236 |
with open(image_path, "rb") as image_file:
|
237 |
image_data = image_file.read()
|
238 |
image_hash = hashlib.md5(image_data).hexdigest()
|
|
|
249 |
if not os.path.isfile(filename):
|
250 |
os.makedirs(os.path.dirname(filename), exist_ok=True)
|
251 |
image.save(filename)
|
252 |
+
|
253 |
+
image_list = []
|
254 |
+
for f in images_this_term:
|
255 |
+
if is_valid_video_filename(f):
|
256 |
+
image_list += sample_frames(f, our_chatbot.num_frames)
|
257 |
+
elif is_valid_image_filename(f):
|
258 |
+
image_list.append(load_image(f))
|
259 |
+
else:
|
260 |
+
raise ValueError("Invalid image file")
|
261 |
+
|
262 |
+
image_tensor = [
|
263 |
+
our_chatbot.image_processor.preprocess(f, return_tensors="pt")["pixel_values"][
|
264 |
+
0
|
265 |
+
]
|
266 |
+
.half()
|
267 |
+
.to(our_chatbot.model.device)
|
268 |
+
for f in image_list
|
269 |
+
]
|
270 |
+
|
271 |
|
272 |
image_tensor = torch.stack(image_tensor)
|
273 |
image_token = DEFAULT_IMAGE_TOKEN * num_new_images
|