# Copyright 2023 Haotian Liu # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Optional, Tuple, Union import torch import torch.nn as nn from torch.nn import CrossEntropyLoss from transformers import AutoConfig, AutoModelForCausalLM, MistralConfig, MistralModel, MistralForCausalLM, GenerationConfig from transformers.modeling_outputs import CausalLMOutputWithPast from transformers.generation.utils import GenerateOutput from ..llava_arch import LlavaMetaModel, LlavaMetaForCausalLM class LlavaMistralConfig(MistralConfig): model_type = "llava_mistral" temperature: float = 0.0 # reset to 0.0, previously 0.9 for Vicuna max_new_tokens: int = 1024 do_sample: bool = False top_p: Optional[float] = None class LlavaMistralModel(LlavaMetaModel, MistralModel): config_class = LlavaMistralConfig def __init__(self, config: MistralConfig): super(LlavaMistralModel, self).__init__(config) class LlavaMistralForCausalLM(MistralForCausalLM, LlavaMetaForCausalLM): config_class = LlavaMistralConfig def __init__(self, config): super(MistralForCausalLM, self).__init__(config) config.model_type = "llava_mistral" config.rope_scaling = None self.model = LlavaMistralModel(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_model(self): return self.model def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, images: Optional[torch.FloatTensor] = None, image_sizes: Optional[List[List[int]]] = None, return_dict: Optional[bool] = None, cache_position=None, ) -> Union[Tuple, CausalLMOutputWithPast]: if inputs_embeds is None: (input_ids, position_ids, attention_mask, past_key_values, inputs_embeds, labels) = self.prepare_inputs_labels_for_multimodal(input_ids, position_ids, attention_mask, past_key_values, labels, images, image_sizes) return super().forward( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) @torch.no_grad() def generate( self, inputs: Optional[torch.Tensor] = None, images: Optional[torch.Tensor] = None, image_sizes: Optional[torch.Tensor] = None, **kwargs, ) -> Union[GenerateOutput, torch.LongTensor]: position_ids = kwargs.pop("position_ids", None) attention_mask = kwargs.pop("attention_mask", None) if "inputs_embeds" in kwargs: raise NotImplementedError("`inputs_embeds` is not supported") if images is not None: (inputs, position_ids, attention_mask, _, inputs_embeds, _) = self.prepare_inputs_labels_for_multimodal(inputs, position_ids, attention_mask, None, None, images, image_sizes=image_sizes) else: inputs_embeds = self.get_model().embed_tokens(inputs) return super().generate(position_ids=position_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, **kwargs) def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): images = kwargs.pop("images", None) image_sizes = kwargs.pop("image_sizes", None) inputs = super().prepare_inputs_for_generation(input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs) if images is not None: inputs["images"] = images if image_sizes is not None: inputs["image_sizes"] = image_sizes return inputs AutoConfig.register("llava_mistral", LlavaMistralConfig) AutoModelForCausalLM.register(LlavaMistralConfig, LlavaMistralForCausalLM)