|
import gradio as gr |
|
import pandas as pd |
|
import numpy as np |
|
from sklearn.datasets import fetch_20newsgroups |
|
from sklearn.feature_extraction.text import TfidfVectorizer |
|
from sklearn.linear_model import LogisticRegression, RidgeClassifier, SGDClassifier |
|
from sklearn.metrics import accuracy_score |
|
from sklearn.naive_bayes import ComplementNB |
|
from sklearn.neighbors import KNeighborsClassifier, NearestCentroid |
|
from sklearn.ensemble import RandomForestClassifier |
|
from sklearn.svm import LinearSVC |
|
from sklearn.utils.extmath import density |
|
from time import time |
|
import matplotlib.pyplot as plt |
|
import matplotlib |
|
from sklearn.metrics import ConfusionMatrixDisplay |
|
import io |
|
import base64 |
|
matplotlib.use('Agg') |
|
|
|
|
|
all_categories = [ |
|
'alt.atheism', |
|
'comp.graphics', |
|
'comp.os.ms-windows.misc', |
|
'comp.sys.ibm.pc.hardware', |
|
'comp.sys.mac.hardware', |
|
'comp.windows.x', |
|
'misc.forsale', |
|
'rec.autos', |
|
'rec.motorcycles', |
|
'rec.sport.baseball', |
|
'rec.sport.hockey', |
|
'sci.crypt', |
|
'sci.electronics', |
|
'sci.med', |
|
'sci.space', |
|
'soc.religion.christian', |
|
'talk.politics.guns', |
|
'talk.politics.mideast', |
|
'talk.politics.misc', |
|
'talk.religion.misc' |
|
] |
|
|
|
|
|
def size_mb(docs): |
|
return sum(len(s.encode("utf-8")) for s in docs) / 1e6 |
|
|
|
|
|
def load_dataset(categories, verbose=False, remove=()): |
|
"""Load and vectorize the 20 newsgroups dataset.""" |
|
|
|
data_train = fetch_20newsgroups( |
|
subset="train", |
|
categories=categories, |
|
shuffle=True, |
|
random_state=42, |
|
remove=remove, |
|
) |
|
|
|
data_test = fetch_20newsgroups( |
|
subset="test", |
|
categories=categories, |
|
shuffle=True, |
|
random_state=42, |
|
remove=remove, |
|
) |
|
|
|
|
|
target_names = data_train.target_names |
|
|
|
|
|
y_train, y_test = data_train.target, data_test.target |
|
|
|
|
|
t0 = time() |
|
vectorizer = TfidfVectorizer( |
|
sublinear_tf=True, max_df=0.5, min_df=5, stop_words="english" |
|
) |
|
X_train = vectorizer.fit_transform(data_train.data) |
|
duration_train = time() - t0 |
|
|
|
|
|
t0 = time() |
|
X_test = vectorizer.transform(data_test.data) |
|
duration_test = time() - t0 |
|
|
|
feature_names = vectorizer.get_feature_names_out() |
|
|
|
if verbose: |
|
|
|
|
|
data_train_size_mb = size_mb(data_train.data) |
|
data_test_size_mb = size_mb(data_test.data) |
|
|
|
print( |
|
f"{len(data_train.data)} documents - " |
|
f"{data_train_size_mb:.2f}MB (training set)" |
|
) |
|
print(f"{len(data_test.data)} documents - {data_test_size_mb:.2f}MB (test set)") |
|
print(f"{len(target_names)} categories") |
|
print( |
|
f"vectorize training done in {duration_train:.3f}s " |
|
f"at {data_train_size_mb / duration_train:.3f}MB/s" |
|
) |
|
print(f"n_samples: {X_train.shape[0]}, n_features: {X_train.shape[1]}") |
|
print( |
|
f"vectorize testing done in {duration_test:.3f}s " |
|
f"at {data_test_size_mb / duration_test:.3f}MB/s" |
|
) |
|
print(f"n_samples: {X_test.shape[0]}, n_features: {X_test.shape[1]}") |
|
|
|
return X_train, X_test, y_train, y_test, feature_names, target_names |
|
|
|
def benchmark(clf, X_train, X_test, y_train, y_test): |
|
print("_" * 80) |
|
print("Training: ") |
|
print(clf) |
|
t0 = time() |
|
clf.fit(X_train, y_train) |
|
train_time = time() - t0 |
|
print(f"train time: {train_time:.3}s") |
|
|
|
t0 = time() |
|
pred = clf.predict(X_test) |
|
test_time = time() - t0 |
|
print(f"test time: {test_time:.3}s") |
|
|
|
score = accuracy_score(y_test, pred) |
|
print(f"accuracy: {score:.3}") |
|
|
|
if hasattr(clf, "coef_"): |
|
print(f"dimensionality: {clf.coef_.shape[1]}") |
|
print(f"density: {density(clf.coef_)}") |
|
print() |
|
|
|
print() |
|
clf_descr = clf.__class__.__name__ |
|
return clf_descr, score, train_time, test_time |
|
|
|
|
|
def run_experiment(categories, models): |
|
X_train, X_test, y_train, y_test, feature_names, target_names = load_dataset( |
|
categories, verbose=True |
|
) |
|
results = [] |
|
for clf, name in models: |
|
print("=" * 80) |
|
print(name) |
|
results.append(benchmark(clf, X_train, X_test, y_train, y_test)) |
|
plot_feature_effects(clf, target_names, feature_names, X_train) |
|
clf_names, score, training_time, test_time = [list(x) for x in zip(*results)] |
|
|
|
training_time = np.array(training_time) |
|
test_time = np.array(test_time) |
|
|
|
fig, ax1 = plt.subplots(figsize=(10, 8)) |
|
ax1.scatter(score, training_time, s=60) |
|
ax1.set( |
|
title="Score-training time trade-off", |
|
yscale="log", |
|
xlabel="test accuracy", |
|
ylabel="training time (s)", |
|
) |
|
|
|
fig, ax2 = plt.subplots(figsize=(10, 8)) |
|
ax2.scatter(score, test_time, s=60) |
|
|
|
ax2.set( |
|
title="Score-test time trade-off", |
|
yscale="log", |
|
xlabel="test accuracy", |
|
ylabel="test time (s)", |
|
) |
|
|
|
for i, txt in enumerate(clf_names): |
|
ax1.annotate(txt, (score[i], training_time[i])) |
|
ax2.annotate(txt, (score[i], test_time[i])) |
|
|
|
result_df = pd.DataFrame( |
|
{"Model": clf_names, "Test Accuracy": score, "Training Time": training_time, "Test Time": test_time} |
|
) |
|
|
|
return result_df |
|
|
|
def run_experiment_gradio(): |
|
models = [(LogisticRegression(C=5, max_iter=1000), "Logistic Regression"), (RidgeClassifier(alpha=1.0, solver="sparse_cg"), "Ridge Classifier"), (KNeighborsClassifier(n_neighbors=100), "kNN"), (RandomForestClassifier(), "Random Forest"), (LinearSVC(C=0.1, dual=False, max_iter=1000), "Linear SVC"), (SGDClassifier(loss="log_loss", alpha=1e-4, n_iter_no_change=3, early_stopping=True), "log-loss SGD"), (NearestCentroid(), "NearestCentroid"), (ComplementNB(alpha=0.1), "Complement naive Bayes")] |
|
|
|
def run_model(model_names, categories): |
|
results = [] |
|
print(model_names) |
|
for model_name in model_names: |
|
model = next((m[0] for m in models if str(m[0]) == model_name), None) |
|
if model is None: |
|
continue |
|
X_train, X_test, y_train, y_test, feature_names, target_names = load_dataset( |
|
categories, verbose=True |
|
) |
|
clf = model |
|
clf_descr, score, train_time, test_time = benchmark(clf, X_train, X_test, y_train, y_test) |
|
results.append({"Model": clf_descr, "Test Accuracy": score, "Training Time": train_time, "Test Time": test_time}) |
|
return pd.DataFrame(results) |
|
|
|
category_options = [category for category in all_categories] |
|
category_group = gr.inputs.CheckboxGroup( |
|
label="Categories", |
|
choices=category_options, |
|
default=category_options[:5], |
|
) |
|
|
|
model_options = [model[0] for model in models] |
|
model_dropdown = gr.inputs.CheckboxGroup( |
|
choices=model_options, |
|
label="Models", |
|
) |
|
|
|
interface = gr.Interface( |
|
fn=run_model, |
|
inputs=[model_dropdown, category_group], |
|
outputs="dataframe", |
|
title="20 Newsgroups Text Classification Experiment", |
|
description="Select one or more categories and one or more models, then click 'Run Experiment' to evaluate them on the 20 newsgroups text classification task.", |
|
allow_flagging=False, |
|
analytics_enabled=False |
|
) |
|
|
|
return interface |
|
|
|
run_experiment_gradio().launch(quiet=False) |