Parinthapat Pengpun
Nice
2b9f83a
import gradio as gr
import pandas as pd
import numpy as np
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression, RidgeClassifier, SGDClassifier
from sklearn.metrics import accuracy_score
from sklearn.naive_bayes import ComplementNB
from sklearn.neighbors import KNeighborsClassifier, NearestCentroid
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import LinearSVC
from sklearn.utils.extmath import density
from time import time
import matplotlib.pyplot as plt
import matplotlib
from sklearn.metrics import ConfusionMatrixDisplay
import io
import base64
matplotlib.use('Agg') # set the backend to avoid GUI warning
all_categories = [
'alt.atheism',
'comp.graphics',
'comp.os.ms-windows.misc',
'comp.sys.ibm.pc.hardware',
'comp.sys.mac.hardware',
'comp.windows.x',
'misc.forsale',
'rec.autos',
'rec.motorcycles',
'rec.sport.baseball',
'rec.sport.hockey',
'sci.crypt',
'sci.electronics',
'sci.med',
'sci.space',
'soc.religion.christian',
'talk.politics.guns',
'talk.politics.mideast',
'talk.politics.misc',
'talk.religion.misc'
]
def size_mb(docs):
return sum(len(s.encode("utf-8")) for s in docs) / 1e6
def load_dataset(categories, verbose=False, remove=()):
"""Load and vectorize the 20 newsgroups dataset."""
data_train = fetch_20newsgroups(
subset="train",
categories=categories,
shuffle=True,
random_state=42,
remove=remove,
)
data_test = fetch_20newsgroups(
subset="test",
categories=categories,
shuffle=True,
random_state=42,
remove=remove,
)
# order of labels in `target_names` can be different from `categories`
target_names = data_train.target_names
# split target in a training set and a test set
y_train, y_test = data_train.target, data_test.target
# Extracting features from the training data using a sparse vectorizer
t0 = time()
vectorizer = TfidfVectorizer(
sublinear_tf=True, max_df=0.5, min_df=5, stop_words="english"
)
X_train = vectorizer.fit_transform(data_train.data)
duration_train = time() - t0
# Extracting features from the test data using the same vectorizer
t0 = time()
X_test = vectorizer.transform(data_test.data)
duration_test = time() - t0
feature_names = vectorizer.get_feature_names_out()
if verbose:
# compute size of loaded data
data_train_size_mb = size_mb(data_train.data)
data_test_size_mb = size_mb(data_test.data)
print(
f"{len(data_train.data)} documents - "
f"{data_train_size_mb:.2f}MB (training set)"
)
print(f"{len(data_test.data)} documents - {data_test_size_mb:.2f}MB (test set)")
print(f"{len(target_names)} categories")
print(
f"vectorize training done in {duration_train:.3f}s "
f"at {data_train_size_mb / duration_train:.3f}MB/s"
)
print(f"n_samples: {X_train.shape[0]}, n_features: {X_train.shape[1]}")
print(
f"vectorize testing done in {duration_test:.3f}s "
f"at {data_test_size_mb / duration_test:.3f}MB/s"
)
print(f"n_samples: {X_test.shape[0]}, n_features: {X_test.shape[1]}")
return X_train, X_test, y_train, y_test, feature_names, target_names
def benchmark(clf, X_train, X_test, y_train, y_test):
print("_" * 80)
print("Training: ")
print(clf)
t0 = time()
clf.fit(X_train, y_train)
train_time = time() - t0
print(f"train time: {train_time:.3}s")
t0 = time()
pred = clf.predict(X_test)
test_time = time() - t0
print(f"test time: {test_time:.3}s")
score = accuracy_score(y_test, pred)
print(f"accuracy: {score:.3}")
if hasattr(clf, "coef_"):
print(f"dimensionality: {clf.coef_.shape[1]}")
print(f"density: {density(clf.coef_)}")
print()
print()
clf_descr = clf.__class__.__name__
return clf_descr, score, train_time, test_time
def run_experiment(categories, models):
X_train, X_test, y_train, y_test, feature_names, target_names = load_dataset(
categories, verbose=True
)
results = []
for clf, name in models:
print("=" * 80)
print(name)
results.append(benchmark(clf, X_train, X_test, y_train, y_test))
plot_feature_effects(clf, target_names, feature_names, X_train)
clf_names, score, training_time, test_time = [list(x) for x in zip(*results)]
training_time = np.array(training_time)
test_time = np.array(test_time)
fig, ax1 = plt.subplots(figsize=(10, 8))
ax1.scatter(score, training_time, s=60)
ax1.set(
title="Score-training time trade-off",
yscale="log",
xlabel="test accuracy",
ylabel="training time (s)",
)
fig, ax2 = plt.subplots(figsize=(10, 8))
ax2.scatter(score, test_time, s=60)
ax2.set(
title="Score-test time trade-off",
yscale="log",
xlabel="test accuracy",
ylabel="test time (s)",
)
for i, txt in enumerate(clf_names):
ax1.annotate(txt, (score[i], training_time[i]))
ax2.annotate(txt, (score[i], test_time[i]))
result_df = pd.DataFrame(
{"Model": clf_names, "Test Accuracy": score, "Training Time": training_time, "Test Time": test_time}
)
return result_df
def run_experiment_gradio():
models = [(LogisticRegression(C=5, max_iter=1000), "Logistic Regression"), (RidgeClassifier(alpha=1.0, solver="sparse_cg"), "Ridge Classifier"), (KNeighborsClassifier(n_neighbors=100), "kNN"), (RandomForestClassifier(), "Random Forest"), (LinearSVC(C=0.1, dual=False, max_iter=1000), "Linear SVC"), (SGDClassifier(loss="log_loss", alpha=1e-4, n_iter_no_change=3, early_stopping=True), "log-loss SGD"), (NearestCentroid(), "NearestCentroid"), (ComplementNB(alpha=0.1), "Complement naive Bayes")]
def run_model(model_names, categories):
results = []
print(model_names)
for model_name in model_names:
model = next((m[0] for m in models if str(m[0]) == model_name), None)
if model is None:
continue
X_train, X_test, y_train, y_test, feature_names, target_names = load_dataset(
categories, verbose=True
)
clf = model
clf_descr, score, train_time, test_time = benchmark(clf, X_train, X_test, y_train, y_test)
results.append({"Model": clf_descr, "Test Accuracy": score, "Training Time": train_time, "Test Time": test_time})
return pd.DataFrame(results)
category_options = [category for category in all_categories]
category_group = gr.inputs.CheckboxGroup(
label="Categories",
choices=category_options,
default=category_options[:5],
)
model_options = [model[0] for model in models]
model_dropdown = gr.inputs.CheckboxGroup(
choices=model_options,
label="Models",
)
interface = gr.Interface(
fn=run_model,
inputs=[model_dropdown, category_group],
outputs="dataframe",
title="20 Newsgroups Text Classification Experiment",
description="Select one or more categories and one or more models, then click 'Run Experiment' to evaluate them on the 20 newsgroups text classification task.",
allow_flagging=False,
analytics_enabled=False
)
return interface
run_experiment_gradio().launch(quiet=False)