import gradio as gr import pandas as pd import numpy as np from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression, RidgeClassifier, SGDClassifier from sklearn.metrics import accuracy_score from sklearn.naive_bayes import ComplementNB from sklearn.neighbors import KNeighborsClassifier, NearestCentroid from sklearn.ensemble import RandomForestClassifier from sklearn.svm import LinearSVC from sklearn.utils.extmath import density from time import time import matplotlib.pyplot as plt import matplotlib from sklearn.metrics import ConfusionMatrixDisplay import io import base64 matplotlib.use('Agg') # set the backend to avoid GUI warning all_categories = [ 'alt.atheism', 'comp.graphics', 'comp.os.ms-windows.misc', 'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware', 'comp.windows.x', 'misc.forsale', 'rec.autos', 'rec.motorcycles', 'rec.sport.baseball', 'rec.sport.hockey', 'sci.crypt', 'sci.electronics', 'sci.med', 'sci.space', 'soc.religion.christian', 'talk.politics.guns', 'talk.politics.mideast', 'talk.politics.misc', 'talk.religion.misc' ] def size_mb(docs): return sum(len(s.encode("utf-8")) for s in docs) / 1e6 def load_dataset(categories, verbose=False, remove=()): """Load and vectorize the 20 newsgroups dataset.""" data_train = fetch_20newsgroups( subset="train", categories=categories, shuffle=True, random_state=42, remove=remove, ) data_test = fetch_20newsgroups( subset="test", categories=categories, shuffle=True, random_state=42, remove=remove, ) # order of labels in `target_names` can be different from `categories` target_names = data_train.target_names # split target in a training set and a test set y_train, y_test = data_train.target, data_test.target # Extracting features from the training data using a sparse vectorizer t0 = time() vectorizer = TfidfVectorizer( sublinear_tf=True, max_df=0.5, min_df=5, stop_words="english" ) X_train = vectorizer.fit_transform(data_train.data) duration_train = time() - t0 # Extracting features from the test data using the same vectorizer t0 = time() X_test = vectorizer.transform(data_test.data) duration_test = time() - t0 feature_names = vectorizer.get_feature_names_out() if verbose: # compute size of loaded data data_train_size_mb = size_mb(data_train.data) data_test_size_mb = size_mb(data_test.data) print( f"{len(data_train.data)} documents - " f"{data_train_size_mb:.2f}MB (training set)" ) print(f"{len(data_test.data)} documents - {data_test_size_mb:.2f}MB (test set)") print(f"{len(target_names)} categories") print( f"vectorize training done in {duration_train:.3f}s " f"at {data_train_size_mb / duration_train:.3f}MB/s" ) print(f"n_samples: {X_train.shape[0]}, n_features: {X_train.shape[1]}") print( f"vectorize testing done in {duration_test:.3f}s " f"at {data_test_size_mb / duration_test:.3f}MB/s" ) print(f"n_samples: {X_test.shape[0]}, n_features: {X_test.shape[1]}") return X_train, X_test, y_train, y_test, feature_names, target_names def benchmark(clf, X_train, X_test, y_train, y_test): print("_" * 80) print("Training: ") print(clf) t0 = time() clf.fit(X_train, y_train) train_time = time() - t0 print(f"train time: {train_time:.3}s") t0 = time() pred = clf.predict(X_test) test_time = time() - t0 print(f"test time: {test_time:.3}s") score = accuracy_score(y_test, pred) print(f"accuracy: {score:.3}") if hasattr(clf, "coef_"): print(f"dimensionality: {clf.coef_.shape[1]}") print(f"density: {density(clf.coef_)}") print() print() clf_descr = clf.__class__.__name__ return clf_descr, score, train_time, test_time def run_experiment(categories, models): X_train, X_test, y_train, y_test, feature_names, target_names = load_dataset( categories, verbose=True ) results = [] for clf, name in models: print("=" * 80) print(name) results.append(benchmark(clf, X_train, X_test, y_train, y_test)) plot_feature_effects(clf, target_names, feature_names, X_train) clf_names, score, training_time, test_time = [list(x) for x in zip(*results)] training_time = np.array(training_time) test_time = np.array(test_time) fig, ax1 = plt.subplots(figsize=(10, 8)) ax1.scatter(score, training_time, s=60) ax1.set( title="Score-training time trade-off", yscale="log", xlabel="test accuracy", ylabel="training time (s)", ) fig, ax2 = plt.subplots(figsize=(10, 8)) ax2.scatter(score, test_time, s=60) ax2.set( title="Score-test time trade-off", yscale="log", xlabel="test accuracy", ylabel="test time (s)", ) for i, txt in enumerate(clf_names): ax1.annotate(txt, (score[i], training_time[i])) ax2.annotate(txt, (score[i], test_time[i])) result_df = pd.DataFrame( {"Model": clf_names, "Test Accuracy": score, "Training Time": training_time, "Test Time": test_time} ) return result_df def run_experiment_gradio(): models = [(LogisticRegression(C=5, max_iter=1000), "Logistic Regression"), (RidgeClassifier(alpha=1.0, solver="sparse_cg"), "Ridge Classifier"), (KNeighborsClassifier(n_neighbors=100), "kNN"), (RandomForestClassifier(), "Random Forest"), (LinearSVC(C=0.1, dual=False, max_iter=1000), "Linear SVC"), (SGDClassifier(loss="log_loss", alpha=1e-4, n_iter_no_change=3, early_stopping=True), "log-loss SGD"), (NearestCentroid(), "NearestCentroid"), (ComplementNB(alpha=0.1), "Complement naive Bayes")] def run_model(model_names, categories): results = [] print(model_names) for model_name in model_names: model = next((m[0] for m in models if str(m[0]) == model_name), None) if model is None: continue X_train, X_test, y_train, y_test, feature_names, target_names = load_dataset( categories, verbose=True ) clf = model clf_descr, score, train_time, test_time = benchmark(clf, X_train, X_test, y_train, y_test) results.append({"Model": clf_descr, "Test Accuracy": score, "Training Time": train_time, "Test Time": test_time}) return pd.DataFrame(results) category_options = [category for category in all_categories] category_group = gr.inputs.CheckboxGroup( label="Categories", choices=category_options, default=category_options[:5], ) model_options = [model[0] for model in models] model_dropdown = gr.inputs.CheckboxGroup( choices=model_options, label="Models", ) interface = gr.Interface( fn=run_model, inputs=[model_dropdown, category_group], outputs="dataframe", title="20 Newsgroups Text Classification Experiment", description="Select one or more categories and one or more models, then click 'Run Experiment' to evaluate them on the 20 newsgroups text classification task.", allow_flagging=False, analytics_enabled=False ) return interface run_experiment_gradio().launch(quiet=False)