Spaces:
Running
Running
File size: 16,655 Bytes
cfe1a3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 |
import re
import sys
import os
import numpy as np
from collections import defaultdict
import pandas as pd
import time
# 如果使用 spaCy 进行 NLP 处理
import spacy
# 如果使用某种情感分析工具,比如 Hugging Face 的模型
from transformers import pipeline
# 还需要导入 pickle 模块(如果你在代码的其他部分使用了它来处理序列化/反序列化)
import pickle
from gensim.models import KeyedVectors
import akshare as ak
from gensim.models import Word2Vec
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from us_stock import *
# 强制使用 GPU
#spacy.require_gpu()
# 加载模型
nlp = spacy.load("en_core_web_md")
# 检查是否使用 GPU
print("Is NPL GPU used Preprocessing.py:", spacy.prefer_gpu())
# 使用合适的模型和tokenizer
model_name = "ProsusAI/finbert" # 选择合适的预训练模型
tokenizer = AutoTokenizer.from_pretrained(model_name)
sa_model = AutoModelForSequenceClassification.from_pretrained(model_name)
# 初始化情感分析器
sentiment_analyzer = pipeline('sentiment-analysis', model=sa_model, tokenizer=tokenizer)
index_us_stock_index_INX = ak.index_us_stock_sina(symbol=".INX")
index_us_stock_index_DJI = ak.index_us_stock_sina(symbol=".DJI")
index_us_stock_index_IXIC = ak.index_us_stock_sina(symbol=".IXIC")
index_us_stock_index_NDX = ak.index_us_stock_sina(symbol=".NDX")
class LazyWord2Vec:
def __init__(self, model_path):
self.model_path = model_path
self._model = None
@property
def model(self):
if self._model is None:
print("Loading Word2Vec model...")
self._model = KeyedVectors.load(self.model_path, mmap='r')
return self._model
@property
def vector_size(self):
self.load_model()
return self.model.vector_size # 现在你可以正确访问 vector_size 属性
def __getitem__(self, key):
return self.model[key]
def __contains__(self, key):
return key in self.model
# 加载预训练的 Google News Word2Vec 模型
# 定义路径列表
search_paths = ["/BuckLake/Model/",
"/Users/parker/Development/Server/BuckLake/Model/",
"/Users/liuyue/Work/BuckLake/Model/"]
# 获取当前文件所在目录的路径
current_directory = os.getcwd()
print(f"Current directory: {current_directory}")
current_directory = os.path.dirname(os.path.abspath(__file__))
# 添加相对于当前项目的路径
# search_paths.insert(0, os.path.join(current_directory, 'model'))
search_paths.insert(1, os.path.join(current_directory, '..', 'Model'))
# 定义相对路径
filename = 'word2vec-google-news-300.model'
# 初始化word2vec_path为None
word2vec_path = None
# 遍历路径列表
for path in search_paths:
potential_path = os.path.join(path, filename)
if os.path.exists(potential_path):
word2vec_path = potential_path
break
else:
print(f"{potential_path} not found.")
# 如果找到路径,加载模型
if word2vec_path:
print(f"Loading Word2Vec model from {word2vec_path}...")
word2vec_model = LazyWord2Vec(word2vec_path)
else:
raise FileNotFoundError(f"{filename} not found in any of the search paths: {search_paths}")
def pos_tagging(text):
try:
doc = nlp(text)
tokens, pos_tags, tags = [], [], []
for token in doc:
if token.is_punct or token.is_stop:
continue
tokens.append(token.text)
pos_tags.append(token.pos_)
tags.append(token.tag_)
except Exception as e:
print(f"Error in pos_tagging for text: {text[:50]}... Error: {str(e)}")
return "", "", ""
return tokens, pos_tags, tags
# 命名实体识别函数
def named_entity_recognition(text):
try:
doc = nlp(text)
entities = [(ent.text, ent.label_) for ent in doc.ents]
except Exception as e:
print(f"Error in named_entity_recognition for text: {text[:50]}... Error: {str(e)}")
entities = []
return entities or [("", "")]
# 处理命名实体识别结果
def process_entities(entities):
entity_counts = defaultdict(int)
try:
for entity in entities:
etype = entity[1] # 取出实体类型
entity_counts[etype] += 1 # 直接对实体类型进行计数
# 将字典转化为有序的数组
entity_types = sorted(entity_counts.keys())
counts = np.array([entity_counts[etype] for etype in entity_types])
except Exception as e:
print(f"Error in process_entities: {str(e)}")
counts = np.zeros(len(entities))
entity_types = []
return counts, entity_types
# 处理词性标注结果
def process_pos_tags(pos_tags):
pos_counts = defaultdict(int)
try:
for pos in pos_tags:
pos_counts[pos[1]] += 1 # 使用POS标签(如NN, VB等)
# 将字典转化为有序的数组
pos_types = sorted(pos_counts.keys())
counts = np.array([pos_counts[pos] for pos in pos_types])
except Exception as e:
print(f"Error in process_pos_tags: {str(e)}")
counts = np.zeros(len(pos_tags))
pos_types = []
return counts, pos_types
# 函数:获取文档向量
def get_document_vector(words, model = word2vec_model):
try:
# 获取每个词的词向量,如果词不在模型中则跳过
word_vectors = [model[word] for word in words if word in model]
# 对词向量进行平均,得到文档向量;如果没有词在模型中则返回零向量
document_vector = np.mean(word_vectors, axis=0) if word_vectors else np.zeros(model.vector_size)
except Exception as e:
print(f"Error in get_document_vector for words: {words[:5]}... Error: {str(e)}")
document_vector = np.zeros(model.vector_size)
return document_vector
# 函数:获取情感得分
def get_sentiment_score(text):
try:
# 直接将原始文本传递给 sentiment_analyzer,它会自动处理 tokenization
result = sentiment_analyzer(text, truncation=True, max_length=512)[0]
score = result['score'] if result['label'] == 'positive' else -result['score']
except Exception as e:
print(f"Error in get_sentiment_score for text: {text[:50]}... Error: {str(e)}")
score = 0.0
return score
def get_stock_info(stock_codes, news_date):
# 获取股票代码和新闻日期
stock_codes = stock_codes.split(',')
news_date = news_date.strftime('%Y%m%d')
print(f"Getting stock info for {stock_codes} on {news_date}")
previous_stock_history = []
following_stock_history = []
previous_stock_index_history = []
following_stock_index_history = []
def process_history(stock_history, target_date):
# 如果数据为空,创建一个空的 DataFrame 并填充为 0
if stock_history.empty:
empty_data = pd.DataFrame({
'开盘': [0] * 4,
'收盘': [0] * 4,
'最高': [0] * 4,
'最低': [0] * 4,
'成交量': [0] * 4,
'成交额': [0] * 4
})
return empty_data, empty_data
# 确保 'date' 列存在
if 'date' not in stock_history.columns:
print(f"'date' column not found in stock history. Returning empty data.")
return pd.DataFrame([[0] * 6] * 4), pd.DataFrame([[0] * 6] * 4)
# 将日期转换为 datetime 格式,便于比较
stock_history['date'] = pd.to_datetime(stock_history['date'])
target_date = pd.to_datetime(target_date)
# 找到目标日期的索引
target_row = stock_history[stock_history['date'] == target_date]
if target_row.empty:
# 如果目标日期找不到,找到离目标日期最近的日期
closest_date_index = (stock_history['date'] - target_date).abs().idxmin()
target_date = stock_history.loc[closest_date_index, 'date']
target_row = stock_history[stock_history['date'] == target_date]
# 确保找到的目标日期有数据
if target_row.empty:
return pd.DataFrame([[0] * 6] * 4), pd.DataFrame([[0] * 6] * 4)
target_index = target_row.index[0]
target_pos = stock_history.index.get_loc(target_index)
# 取出目标日期及其前3条记录
previous_rows = stock_history.iloc[max(0, target_pos - 3):target_pos + 1]
# 取出目标日期及其后4条记录
following_rows = stock_history.iloc[target_pos:target_pos + 4]
# 删除日期列
previous_rows = previous_rows.drop(columns=['date'])
following_rows = following_rows.drop(columns=['date'])
# 如果 previous_rows 或 following_rows 的行数不足 4,则填充至 4 行
if len(previous_rows) < 4:
previous_rows = previous_rows.reindex(range(4), fill_value=0)
if len(following_rows) < 4:
following_rows = following_rows.reindex(range(4), fill_value=0)
# 只返回前4行,并只返回前6列(开盘、收盘、最高、最低、成交量、成交额)
previous_rows = previous_rows.iloc[:4, :6]
following_rows = following_rows.iloc[:4, :6]
return previous_rows, following_rows
if not stock_codes or stock_codes == ['']:
# 如果 stock_codes 为空,直接获取并返回大盘数据
stock_index_history = get_stock_index_history("", news_date)
previous_rows, following_rows = process_history(stock_index_history, news_date)
previous_stock_index_history.append(previous_rows.values.tolist())
following_stock_index_history.append(following_rows.values.tolist())
# 个股补零逻辑
previous_stock_history.append([[0] * len(previous_rows.columns)] * len(previous_rows))
following_stock_history.append([[0] * len(following_rows.columns)] * len(following_rows))
else:
for stock_code in stock_codes:
stock_code = stock_code.strip()
stock_history = get_stock_history(stock_code, news_date)
stock_index_history = get_stock_index_history(stock_code, news_date)
# 处理个股数据
previous_rows, following_rows = process_history(stock_history, news_date)
previous_stock_history.append(previous_rows.values.tolist())
following_stock_history.append(following_rows.values.tolist())
# 处理大盘数据
previous_rows, following_rows = process_history(stock_index_history, news_date)
previous_stock_index_history.append(previous_rows.values.tolist())
following_stock_index_history.append(following_rows.values.tolist())
return previous_stock_history, following_stock_history, previous_stock_index_history, following_stock_index_history
def lemmatized_entry(entry):
entry_start_time = time.time()
# Step 1 - 条目聚合
lemmatized_text = preprocessing_entry(entry)
return lemmatized_text
# 1. 数据清理
# 1.1 合并数据
# 1.2 去除噪声
# 1.3 大小写转换
# 1.4 去除停用词
# 1.5 词汇矫正与拼写检查
# 1.6 词干提取与词形还原
# 强制使用 GPU
# spacy.require_gpu()
# 加载模型
nlp = spacy.load("en_core_web_md")
# 检查是否使用 GPU
print("Is NPL GPU used Lemmatized:", spacy.prefer_gpu())
def preprocessing_entry(news_entry):
"""数据清理启动函数
Args:
text (str): preprocessing后的文本
Returns:
[str]]: 词干提取后的String列表
"""
# 1.1 合并数据
text = merge_text(news_entry)
# 1.2 去除噪声
text = disposal_noise(text)
# 1.3 大小写转换
text = text.lower()
# 1.4 去除停用词
text = remove_stopwords(text)
# 1.5 拼写检查
#text = correct_spelling(text)
#print(f"1.5 拼写检查后的文本:{text}")
# 1.6 词干提取与词形还原
lemmatized_text_list = lemmatize_text(text)
#print(f"1.6 词干提取与词形还原后的文本:{lemmatized_text_list}")
return lemmatized_text_list
# 1.1 合并数据
def merge_text(news_entry):
return news_entry
# 1.2 去除噪声
def disposal_noise(text):
# 移除HTML标签
text = re.sub(r'<.*?>', '', text)
# 移除URLs
text = re.sub(r'http\S+|www\S+|https\S+', '', text, flags=re.MULTILINE)
# 移除方括号内的内容
# text = re.sub(r'\[.*?\]', '', text)
# 移除标点符号
# text = re.sub(r'[^\w\s]', '', text)
# 移除多余的空格
text = re.sub(r'\s+', ' ', text).strip()
# 或者选择性地过滤,例如移除表情符号
# text = re.sub(r'[^\w\s.,!?]', '', text)
# 移除换行符和制表符
text = re.sub(r'[\n\t\r]', ' ', text)
return text
# 1.4 去除停用词
def remove_stopwords(text):
# 使用 spaCy 处理文本
doc = nlp(text)
# 去除停用词,并且仅保留标识为“词”(Token.is_alpha)类型的标记
filtered_sentence = [token.text for token in doc if not token.is_stop and (token.is_alpha or token.like_num)]
return ' '.join(filtered_sentence)
# 1.5 拼写检查
# 该函数用于检查输入文本的拼写错误,并修正
# def correct_spelling(text):
# corrected_text = []
# doc = nlp(text)
# for token in doc:
# if token.is_alpha: # 仅检查字母构成的单词
# corrected_word = spell.correction(token.text)
# if corrected_word is None:
# # 如果拼写检查没有建议,保留原始单词
# corrected_word = token.text
# corrected_text.append(corrected_word)
# else:
# corrected_text.append(token.text)
# return " ".join(corrected_text)
# 1.6 词干提取与词形还原
# 该函数用于对输入文本进行词形还原,返回一个包含词形还原后单词
def lemmatize_text(text):
# 提取词干化后的词
lemmatized_words = []
doc = nlp(text) # 需要在这里处理输入文本
for token in doc:
# 忽略标点符号和空格
if not token.is_punct and not token.is_space and (token.is_alpha or token.like_num):
lemmatized_words.append(token.lemma_)
return lemmatized_words
# 2. 数据增强和特征提取
# 2.1 词性标注(Part-of-Speech Tagging)
# 为每个词标注其词性(如名词、动词、形容词等),这有助于后续的句法分析和信息提取。
# 工具:spaCy 或 NLTK
# 2.2 命名实体识别(NER)
# 识别文本中的命名实体,如人名、地名、组织机构等,提取出这些实体信息。
# 工具:spaCy 或 Stanford NER
# 2.3 句法分析与依存分析
# 分析句子结构,理解单词之间的关系(如主谓宾结构)。
# 工具:spaCy 或 NLTK
# 2 特征提取
# 强制使用 GPU
#spacy.require_gpu()
# 加载模型
nlp = spacy.load("en_core_web_md")
# 检查是否使用 GPU
print("Is NPL GPU used Enchance_text.py:", spacy.prefer_gpu())
# 2.3 句法分析与依存分析
def dependency_parsing(text):
doc = nlp(text)
dependencies = []
for token in doc:
# 过滤标点符号和停用词,或其他不需要的词性
if token.is_punct or token.is_stop:
continue
# 可以进一步根据特定的依存关系类型过滤结果
# 常见的依存关系类型: 'nsubj' (名词主语), 'dobj' (直接宾语), 等等
# if token.dep_ not in {'nsubj', 'dobj', ...}:
# continue
dependencies.append((token.text, token.dep_, token.head.text))
return dependencies
def processing_entry(entry):
# print(f"processing_entry: {entry}")
lemmatized_entry = preprocessing_entry(entry)
# print(f"lemmatized_entry: {lemmatized_entry}")
cleaned_text = disposal_noise(entry)
# print(f"disposal_noise: {cleaned_text}")
pos_tag = pos_tagging(cleaned_text)
# print(f"pos_tagging: {db_pos_tag}")
ner = named_entity_recognition(cleaned_text)
# print(f"named_entity_recognition: {db_ner}")
dependency_parsed = dependency_parsing(cleaned_text)
# print(f"dependency_parsing: {db_dependency_parsing}")
sentiment_score = get_sentiment_score(cleaned_text)
# print(f"sentiment_score: {sentiment_score}")
return (lemmatized_entry, pos_tag, ner, dependency_parsed, sentiment_score)
|