Spaces:
Running
on
Zero
Running
on
Zero
# Openpose | |
# Original from CMU https://github.com/CMU-Perceptual-Computing-Lab/openpose | |
# 2nd Edited by https://github.com/Hzzone/pytorch-openpose | |
# 3rd Edited by ControlNet | |
# 4th Edited by ControlNet (added face and correct hands) | |
import os | |
import pdb | |
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" | |
import torch | |
import numpy as np | |
from . import util | |
from .body import Body | |
from .hand import Hand | |
from .face import Face | |
from annotator.util import annotator_ckpts_path | |
body_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/body_pose_model.pth" | |
hand_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/hand_pose_model.pth" | |
face_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/facenet.pth" | |
def draw_pose(pose, H, W, draw_body=True, draw_hand=True, draw_face=True): | |
bodies = pose['bodies'] | |
faces = pose['faces'] | |
hands = pose['hands'] | |
candidate = bodies['candidate'] | |
subset = bodies['subset'] | |
canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8) | |
if draw_body: | |
canvas = util.draw_bodypose(canvas, candidate, subset) | |
if draw_hand: | |
canvas = util.draw_handpose(canvas, hands) | |
if draw_face: | |
canvas = util.draw_facepose(canvas, faces) | |
return canvas | |
class OpenposeDetector: | |
def __init__(self): | |
body_modelpath = os.path.join(annotator_ckpts_path, "body_pose_model.pth") | |
# hand_modelpath = os.path.join(annotator_ckpts_path, "hand_pose_model.pth") | |
# face_modelpath = os.path.join(annotator_ckpts_path, "facenet.pth") | |
if not os.path.exists(body_modelpath): | |
from basicsr.utils.download_util import load_file_from_url | |
load_file_from_url(body_model_path, model_dir=annotator_ckpts_path) | |
# if not os.path.exists(hand_modelpath): | |
# from basicsr.utils.download_util import load_file_from_url | |
# load_file_from_url(hand_model_path, model_dir=annotator_ckpts_path) | |
# if not os.path.exists(face_modelpath): | |
# from basicsr.utils.download_util import load_file_from_url | |
# load_file_from_url(face_model_path, model_dir=annotator_ckpts_path) | |
self.body_estimation = Body(body_modelpath) | |
# self.hand_estimation = Hand(hand_modelpath) | |
# self.face_estimation = Face(face_modelpath) | |
def __call__(self, oriImg, hand_and_face=False, return_is_index=False): | |
oriImg = oriImg[:, :, ::-1].copy() | |
H, W, C = oriImg.shape | |
with torch.no_grad(): | |
candidate, subset = self.body_estimation(oriImg) | |
hands = [] | |
faces = [] | |
if hand_and_face: | |
# Hand | |
hands_list = util.handDetect(candidate, subset, oriImg) | |
for x, y, w, is_left in hands_list: | |
peaks = self.hand_estimation(oriImg[y:y + w, x:x + w, :]).astype(np.float32) | |
if peaks.ndim == 2 and peaks.shape[1] == 2: | |
peaks[:, 0] = np.where(peaks[:, 0] < 1e-6, -1, peaks[:, 0] + x) / float(W) | |
peaks[:, 1] = np.where(peaks[:, 1] < 1e-6, -1, peaks[:, 1] + y) / float(H) | |
hands.append(peaks.tolist()) | |
# Face | |
faces_list = util.faceDetect(candidate, subset, oriImg) | |
for x, y, w in faces_list: | |
heatmaps = self.face_estimation(oriImg[y:y + w, x:x + w, :]) | |
peaks = self.face_estimation.compute_peaks_from_heatmaps(heatmaps).astype(np.float32) | |
if peaks.ndim == 2 and peaks.shape[1] == 2: | |
peaks[:, 0] = np.where(peaks[:, 0] < 1e-6, -1, peaks[:, 0] + x) / float(W) | |
peaks[:, 1] = np.where(peaks[:, 1] < 1e-6, -1, peaks[:, 1] + y) / float(H) | |
faces.append(peaks.tolist()) | |
if candidate.ndim == 2 and candidate.shape[1] == 4: | |
candidate = candidate[:, :2] | |
candidate[:, 0] /= float(W) | |
candidate[:, 1] /= float(H) | |
bodies = dict(candidate=candidate.tolist(), subset=subset.tolist()) | |
pose = dict(bodies=bodies, hands=hands, faces=faces) | |
if return_is_index: | |
return pose | |
else: | |
return pose, draw_pose(pose, H, W) | |