parokshsaxena commited on
Commit
f65f11f
Β·
1 Parent(s): 4191c16

adding option to pass background image for adding background

Browse files
Files changed (2) hide show
  1. app.py +25 -6
  2. src/background_processor.py +38 -0
app.py CHANGED
@@ -4,6 +4,7 @@ from PIL import Image
4
  from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
5
  from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
6
  from src.unet_hacked_tryon import UNet2DConditionModel
 
7
  from transformers import (
8
  CLIPImageProcessor,
9
  CLIPVisionModelWithProjection,
@@ -131,7 +132,7 @@ POSE_HEIGHT = int(HEIGHT/2) #int(HEIGHT/2)
131
  CATEGORY = "upper_body" # "lower_body"
132
 
133
  @spaces.GPU
134
- def start_tryon(dict,garm_img,garment_des,is_checked,is_checked_crop,denoise_steps,seed):
135
  device = "cuda"
136
  # device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
137
 
@@ -249,9 +250,17 @@ def start_tryon(dict,garm_img,garment_des,is_checked,is_checked_crop,denoise_ste
249
  if is_checked_crop:
250
  out_img = images[0].resize(crop_size)
251
  human_img_orig.paste(out_img, (int(left), int(top)))
252
- return human_img_orig, mask_gray
 
253
  else:
254
- return images[0], mask_gray
 
 
 
 
 
 
 
255
  # return images[0], mask_gray
256
 
257
  garm_list = os.listdir(os.path.join(example_path,"cloth"))
@@ -298,13 +307,23 @@ with image_blocks as demo:
298
  inputs=garm_img,
299
  examples_per_page=8,
300
  examples=garm_list_path)
 
 
 
 
 
 
 
 
 
 
301
  with gr.Column():
302
  # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
303
  masked_img = gr.Image(label="Masked image output", elem_id="masked-img", show_share_button=False)
304
- with gr.Column():
305
  # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
306
  image_out = gr.Image(label="Output", elem_id="output-img", show_share_button=False)
307
-
308
 
309
 
310
 
@@ -317,7 +336,7 @@ with image_blocks as demo:
317
 
318
 
319
 
320
- try_button.click(fn=start_tryon, inputs=[imgs, garm_img, prompt, is_checked,is_checked_crop, denoise_steps, seed], outputs=[image_out,masked_img], api_name='tryon')
321
 
322
 
323
 
 
4
  from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
5
  from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
6
  from src.unet_hacked_tryon import UNet2DConditionModel
7
+ from src.background_processor import BackgroundProcessor
8
  from transformers import (
9
  CLIPImageProcessor,
10
  CLIPVisionModelWithProjection,
 
132
  CATEGORY = "upper_body" # "lower_body"
133
 
134
  @spaces.GPU
135
+ def start_tryon(dict,garm_img,garment_des, background_img, is_checked,is_checked_crop,denoise_steps,seed):
136
  device = "cuda"
137
  # device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
138
 
 
250
  if is_checked_crop:
251
  out_img = images[0].resize(crop_size)
252
  human_img_orig.paste(out_img, (int(left), int(top)))
253
+ final_image = human_img_orig
254
+ # return human_img_orig, mask_gray
255
  else:
256
+ final_image = images[0]
257
+ # return images[0], mask_gray
258
+
259
+ # apply background to final image
260
+ if background_img:
261
+ logging.info("Adding background")
262
+ final_image = BackgroundProcessor.add_background(final_image, background_img)
263
+ return final_image, mask_gray
264
  # return images[0], mask_gray
265
 
266
  garm_list = os.listdir(os.path.join(example_path,"cloth"))
 
307
  inputs=garm_img,
308
  examples_per_page=8,
309
  examples=garm_list_path)
310
+
311
+ with gr.Column():
312
+ background_img = gr.Image(label="Background", sources='upload', type="pil")
313
+
314
+ with gr.Column():
315
+ with gr.Row():
316
+ image_out = gr.Image(label="Output", elem_id="output-img", show_share_button=False)
317
+ with gr.Row():
318
+ masked_img = gr.Image(label="Masked image output", elem_id="masked-img", show_share_button=False)
319
+ """
320
  with gr.Column():
321
  # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
322
  masked_img = gr.Image(label="Masked image output", elem_id="masked-img", show_share_button=False)
323
+ with gr.Column():
324
  # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
325
  image_out = gr.Image(label="Output", elem_id="output-img", show_share_button=False)
326
+ """
327
 
328
 
329
 
 
336
 
337
 
338
 
339
+ try_button.click(fn=start_tryon, inputs=[imgs, garm_img, prompt, background_img, is_checked,is_checked_crop, denoise_steps, seed], outputs=[image_out,masked_img], api_name='tryon')
340
 
341
 
342
 
src/background_processor.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from PIL import Image
2
+ import numpy as np
3
+ from preprocess.humanparsing.run_parsing import Parsing
4
+
5
+ parsing_model = Parsing(0)
6
+
7
+ class BackgroundProcessor:
8
+ @classmethod
9
+ def add_background(cls, human_img: Image, background_img: Image):
10
+
11
+ human_img = human_img.convert("RGB")
12
+ width = human_img.width
13
+ height = human_img.height
14
+
15
+ # Create mask image
16
+ parsed_img, _ = parsing_model(human_img)
17
+ mask_img = parsed_img.convert("L")
18
+ mask_img = mask_img.resize((width, height))
19
+
20
+ background_img = background_img.convert("RGB")
21
+ background_img = background_img.resize((width, height))
22
+
23
+ # Convert to numpy arrays
24
+ human_np = np.array(human_img)
25
+ mask_np = np.array(mask_img)
26
+ background_np = np.array(background_img)
27
+
28
+ # Ensure mask is 3-channel (RGB) for compatibility
29
+ mask_np = np.stack((mask_np,) * 3, axis=-1)
30
+
31
+ # Apply the mask to human_img
32
+ human_with_background = np.where(mask_np > 0, human_np, background_np)
33
+
34
+ # Convert back to PIL Image
35
+ result_img = Image.fromarray(human_with_background.astype('uint8'))
36
+
37
+ # Return or save the result
38
+ return result_img