Spaces:
Sleeping
Sleeping
File size: 10,746 Bytes
42b54f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import json
import re
import nltk
from nltk.tokenize import sent_tokenize
import torch
from sentence_transformers import SentenceTransformer, util
import faiss
import numpy as np
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
from rank_bm25 import BM25Okapi # BM25 for hybrid search
import logging
nltk.download('punkt', quiet=True)
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
class Hogragger:
def __init__(self, corpus_path, model_name='sentence-transformers/all-MiniLM-L12-v2', qa_model='deepset/roberta-large-squad2', classifier_model='deepset/roberta-large-squad2'):
self.corpus = self.load_corpus(corpus_path)
self.cleaned_passages = self.preprocess_corpus()
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
logging.info(f"Using device: {self.device}")
# Initialize embedding model and build FAISS index
self.model = SentenceTransformer(model_name).to(self.device)
self.index = self.build_faiss_index()
# Initialize BM25 for lexical matching
self.bm25 = self.build_bm25_index()
# Initialize classifier for question type prediction
self.tokenizer = AutoTokenizer.from_pretrained(classifier_model)
self.classifier = AutoModelForSequenceClassification.from_pretrained(classifier_model).to(self.device)
# QA Model
self.qa_model = pipeline('question-answering', model=qa_model, device=0 if self.device == 'cuda' else -1)
def load_corpus(self, path):
logging.info(f"Loading corpus from {path}")
with open(path, "r") as f:
corpus = json.load(f)
logging.info(f"Loaded {len(corpus)} documents")
return corpus
# def preprocess_corpus(self):
# cleaned_passages = []
# for article in self.corpus:
# body = article.get('body', '')
# clean_body = re.sub(r'<.*?>', '', body) # Clean HTML tags
# clean_body = re.sub(r'\s+', ' ', clean_body).strip() # Clean extra spaces
# sentences = sent_tokenize(clean_body)
# chunk = ""
# for sentence in sentences:
# if len(chunk.split()) + len(sentence.split()) <= 300:
# chunk += " " + sentence
# else:
# cleaned_passages.append(self.create_passage(article, chunk))
# chunk = sentence
# if chunk:
# cleaned_passages.append(self.create_passage(article, chunk))
# logging.info(f"Created {len(cleaned_passages)} passages")
# return cleaned_passages
def preprocess_corpus(self):
cleaned_passages = []
for article in self.corpus:
body = article.get('body', '')
clean_body = re.sub(r'<.*?>', '', body) # Clean HTML tags
clean_body = re.sub(r'\s+', ' ', clean_body).strip() # Clean extra spaces
# Simply take the full cleaned text as a passage without chunking or sentence splitting
cleaned_passages.append(self.create_passage(article, clean_body))
logging.info(f"Created {len(cleaned_passages)} passages")
return cleaned_passages
def create_passage(self, article, chunk):
"""Creates a passage dictionary from an article and chunk of text."""
return {
"title": article['title'],
"author": article.get('author', 'Unknown'),
"published_at": article['published_at'],
"category": article['category'],
"url": article['url'],
"source": article['source'],
"passage": chunk.strip()
}
def build_faiss_index(self):
logging.info("Building FAISS index...")
embeddings = self.model.encode([p['passage'] for p in self.cleaned_passages], convert_to_tensor=True, device=self.device)
embeddings = np.array(embeddings.cpu()).astype('float32')
logging.info(f"Shape of embeddings: {embeddings.shape}")
index = faiss.IndexFlatL2(embeddings.shape[1]) # Initialize FAISS index
if self.device == 'cuda':
try:
res = faiss.StandardGpuResources()
gpu_index = faiss.index_cpu_to_gpu(res, 0, index)
gpu_index.add(embeddings)
logging.info("Successfully created GPU index")
return gpu_index
except RuntimeError as e:
logging.error(f"GPU index creation failed: {e}")
logging.info("Falling back to CPU index")
index.add(embeddings) # Add embeddings to CPU index
logging.info("Successfully created CPU index")
return index
def build_bm25_index(self):
logging.info("Building BM25 index...")
tokenized_corpus = [p['passage'].split() for p in self.cleaned_passages]
bm25 = BM25Okapi(tokenized_corpus)
logging.info("Successfully built BM25 index")
return bm25
def predict_question_type(self, query):
inputs = self.tokenizer(query, return_tensors='pt').to(self.device)
outputs = self.classifier(**inputs)
prediction = torch.argmax(outputs.logits, dim=1).item()
labels = {0: 'inference_query', 1: 'comparison_query', 2: 'null_query', 3: 'temporal_query', 4: 'fact_query'}
return labels.get(prediction, 'unknown_query')
def retrieve_passages(self, query, k=100, threshold=0.7):
try:
# FAISS retrieval
query_embedding = self.model.encode([query], convert_to_tensor=True, device=self.device)
D, I = self.index.search(np.array(query_embedding.cpu()), k)
# BM25 retrieval
tokenized_query = query.split()
bm25_scores = self.bm25.get_scores(tokenized_query)
# Combine FAISS and BM25 results
hybrid_scores = self.combine_faiss_bm25_scores(D[0], bm25_scores, I)
# Filter passages based on hybrid score
passages = [self.cleaned_passages[i] for i, score in zip(I[0], hybrid_scores) if score > threshold]
logging.info(f"Retrieved {len(passages)} passages using hybrid search for query.")
return passages
except Exception as e:
logging.error(f"Error in retrieving passages: {e}")
return []
def combine_faiss_bm25_scores(self, faiss_scores, bm25_scores, passage_indices):
# Normalize and combine FAISS and BM25 scores
bm25_scores = np.array(bm25_scores)[passage_indices]
faiss_scores = np.array(faiss_scores)
# Convert FAISS distances into similarities by inverting the scale
faiss_similarities = 1 / (faiss_scores + 1e-6) # Avoid division by zero
# Normalize scores (scale between 0 and 1)
bm25_scores = (bm25_scores - np.min(bm25_scores)) / (np.max(bm25_scores) - np.min(bm25_scores) + 1e-6)
faiss_similarities = (faiss_similarities - np.min(faiss_similarities)) / (np.max(faiss_similarities) - np.min(faiss_similarities) + 1e-6)
# Weighted combination (you can adjust weights)
combined_scores = 0.7 * faiss_similarities + 0.3 * bm25_scores
combined_scores = np.squeeze(combined_scores) # Ensure it's a single-dimensional array
return combined_scores
def filter_passages(self, query, passages):
try:
query_embedding = self.model.encode(query, convert_to_tensor=True)
passage_embeddings = self.model.encode([p['passage'] for p in passages], convert_to_tensor=True)
similarities = util.pytorch_cos_sim(query_embedding, passage_embeddings)
top_k = min(10, len(passages))
top_indices = similarities.topk(k=top_k)[1].tolist()[0]
selected_passages = []
used_titles = set()
for i in top_indices:
if passages[i]['title'] not in used_titles:
selected_passages.append(passages[i])
used_titles.add(passages[i]['title'])
return selected_passages
except Exception as e:
logging.error(f"Error in filtering passages: {e}")
return []
def generate_answer(self, query, passages):
try:
context = " ".join([p['passage'] for p in passages[:5]])
answer = self.qa_model(question=query, context=context)
logging.info(f"Generated answer: {answer['answer']}")
return answer['answer']
except Exception as e:
logging.error(f"Error in generating answer: {e}")
return "Insufficient information."
def post_process_answer(self, answer, confidence=0.2):
answer = re.sub(r'^.*\?', '', answer).strip()
answer = answer.capitalize()
if len(answer) > 100:
truncated = re.match(r'^(.*?[.!?])\s', answer)
if truncated:
answer = truncated.group(1)
if confidence < 0.2:
logging.warning(f"Answer confidence too low: {confidence}")
return "I'm unsure about this answer."
return answer
def process_query(self, query):
question_type = self.predict_question_type(query)
retrieved_passages = self.retrieve_passages(query, k=100, threshold=0.7)
if not retrieved_passages:
return {"query": query, "answer": "No relevant information found", "question_type": question_type, "evidence_list": []}
filtered_passages = self.filter_passages(query, retrieved_passages)
raw_answer = self.generate_answer(query, filtered_passages)
evidence_count = min(len(filtered_passages), 4)
evidence_list = [
{
"title": p['title'],
"author": p['author'],
"url": p['url'],
"source": p['source'],
"category": p['category'],
"published_at": p['published_at'],
"fact": self.extract_fact(p['passage'], query)
} for p in filtered_passages[:evidence_count]
]
final_answer = self.post_process_answer(raw_answer)
return {
"query": query,
"answer": final_answer,
"question_type": question_type,
"evidence_list": evidence_list
}
def extract_fact(self, passage, query):
# Extracting most relevant sentence from passage
sentences = sent_tokenize(passage)
query_keywords = set(query.lower().split())
best_sentence = max(sentences, key=lambda s: len(set(s.lower().split()) & query_keywords), default="")
return best_sentence if best_sentence else (sentences[0] if sentences else "") |