|
''' |
|
modified by lihaoweicv |
|
pytorch version |
|
''' |
|
|
|
''' |
|
M-LSD |
|
Copyright 2021-present NAVER Corp. |
|
Apache License v2.0 |
|
''' |
|
|
|
import os |
|
import numpy as np |
|
import cv2 |
|
import torch |
|
from torch.nn import functional as F |
|
|
|
|
|
def deccode_output_score_and_ptss(tpMap, topk_n = 200, ksize = 5): |
|
''' |
|
tpMap: |
|
center: tpMap[1, 0, :, :] |
|
displacement: tpMap[1, 1:5, :, :] |
|
''' |
|
b, c, h, w = tpMap.shape |
|
assert b==1, 'only support bsize==1' |
|
displacement = tpMap[:, 1:5, :, :][0] |
|
center = tpMap[:, 0, :, :] |
|
heat = torch.sigmoid(center) |
|
hmax = F.max_pool2d( heat, (ksize, ksize), stride=1, padding=(ksize-1)//2) |
|
keep = (hmax == heat).float() |
|
heat = heat * keep |
|
heat = heat.reshape(-1, ) |
|
|
|
scores, indices = torch.topk(heat, topk_n, dim=-1, largest=True) |
|
yy = torch.floor_divide(indices, w).unsqueeze(-1) |
|
xx = torch.fmod(indices, w).unsqueeze(-1) |
|
ptss = torch.cat((yy, xx),dim=-1) |
|
|
|
ptss = ptss.detach().cpu().numpy() |
|
scores = scores.detach().cpu().numpy() |
|
displacement = displacement.detach().cpu().numpy() |
|
displacement = displacement.transpose((1,2,0)) |
|
return ptss, scores, displacement |
|
|
|
|
|
def pred_lines(image, model, |
|
input_shape=[512, 512], |
|
score_thr=0.10, |
|
dist_thr=20.0): |
|
h, w, _ = image.shape |
|
h_ratio, w_ratio = [h / input_shape[0], w / input_shape[1]] |
|
|
|
resized_image = np.concatenate([cv2.resize(image, (input_shape[1], input_shape[0]), interpolation=cv2.INTER_AREA), |
|
np.ones([input_shape[0], input_shape[1], 1])], axis=-1) |
|
|
|
resized_image = resized_image.transpose((2,0,1)) |
|
batch_image = np.expand_dims(resized_image, axis=0).astype('float32') |
|
batch_image = (batch_image / 127.5) - 1.0 |
|
|
|
batch_image = torch.from_numpy(batch_image).float().cuda() |
|
outputs = model(batch_image) |
|
pts, pts_score, vmap = deccode_output_score_and_ptss(outputs, 200, 3) |
|
start = vmap[:, :, :2] |
|
end = vmap[:, :, 2:] |
|
dist_map = np.sqrt(np.sum((start - end) ** 2, axis=-1)) |
|
|
|
segments_list = [] |
|
for center, score in zip(pts, pts_score): |
|
y, x = center |
|
distance = dist_map[y, x] |
|
if score > score_thr and distance > dist_thr: |
|
disp_x_start, disp_y_start, disp_x_end, disp_y_end = vmap[y, x, :] |
|
x_start = x + disp_x_start |
|
y_start = y + disp_y_start |
|
x_end = x + disp_x_end |
|
y_end = y + disp_y_end |
|
segments_list.append([x_start, y_start, x_end, y_end]) |
|
|
|
lines = 2 * np.array(segments_list) |
|
lines[:, 0] = lines[:, 0] * w_ratio |
|
lines[:, 1] = lines[:, 1] * h_ratio |
|
lines[:, 2] = lines[:, 2] * w_ratio |
|
lines[:, 3] = lines[:, 3] * h_ratio |
|
|
|
return lines |
|
|
|
|
|
def pred_squares(image, |
|
model, |
|
input_shape=[512, 512], |
|
params={'score': 0.06, |
|
'outside_ratio': 0.28, |
|
'inside_ratio': 0.45, |
|
'w_overlap': 0.0, |
|
'w_degree': 1.95, |
|
'w_length': 0.0, |
|
'w_area': 1.86, |
|
'w_center': 0.14}): |
|
''' |
|
shape = [height, width] |
|
''' |
|
h, w, _ = image.shape |
|
original_shape = [h, w] |
|
|
|
resized_image = np.concatenate([cv2.resize(image, (input_shape[0], input_shape[1]), interpolation=cv2.INTER_AREA), |
|
np.ones([input_shape[0], input_shape[1], 1])], axis=-1) |
|
resized_image = resized_image.transpose((2, 0, 1)) |
|
batch_image = np.expand_dims(resized_image, axis=0).astype('float32') |
|
batch_image = (batch_image / 127.5) - 1.0 |
|
|
|
batch_image = torch.from_numpy(batch_image).float().cuda() |
|
outputs = model(batch_image) |
|
|
|
pts, pts_score, vmap = deccode_output_score_and_ptss(outputs, 200, 3) |
|
start = vmap[:, :, :2] |
|
end = vmap[:, :, 2:] |
|
dist_map = np.sqrt(np.sum((start - end) ** 2, axis=-1)) |
|
|
|
junc_list = [] |
|
segments_list = [] |
|
for junc, score in zip(pts, pts_score): |
|
y, x = junc |
|
distance = dist_map[y, x] |
|
if score > params['score'] and distance > 20.0: |
|
junc_list.append([x, y]) |
|
disp_x_start, disp_y_start, disp_x_end, disp_y_end = vmap[y, x, :] |
|
d_arrow = 1.0 |
|
x_start = x + d_arrow * disp_x_start |
|
y_start = y + d_arrow * disp_y_start |
|
x_end = x + d_arrow * disp_x_end |
|
y_end = y + d_arrow * disp_y_end |
|
segments_list.append([x_start, y_start, x_end, y_end]) |
|
|
|
segments = np.array(segments_list) |
|
|
|
|
|
|
|
point = np.array([[0, 0]]) |
|
point = point[0] |
|
start = segments[:, :2] |
|
end = segments[:, 2:] |
|
diff = start - end |
|
a = diff[:, 1] |
|
b = -diff[:, 0] |
|
c = a * start[:, 0] + b * start[:, 1] |
|
|
|
d = np.abs(a * point[0] + b * point[1] - c) / np.sqrt(a ** 2 + b ** 2 + 1e-10) |
|
theta = np.arctan2(diff[:, 0], diff[:, 1]) * 180 / np.pi |
|
theta[theta < 0.0] += 180 |
|
hough = np.concatenate([d[:, None], theta[:, None]], axis=-1) |
|
|
|
d_quant = 1 |
|
theta_quant = 2 |
|
hough[:, 0] //= d_quant |
|
hough[:, 1] //= theta_quant |
|
_, indices, counts = np.unique(hough, axis=0, return_index=True, return_counts=True) |
|
|
|
acc_map = np.zeros([512 // d_quant + 1, 360 // theta_quant + 1], dtype='float32') |
|
idx_map = np.zeros([512 // d_quant + 1, 360 // theta_quant + 1], dtype='int32') - 1 |
|
yx_indices = hough[indices, :].astype('int32') |
|
acc_map[yx_indices[:, 0], yx_indices[:, 1]] = counts |
|
idx_map[yx_indices[:, 0], yx_indices[:, 1]] = indices |
|
|
|
acc_map_np = acc_map |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
acc_map = torch.from_numpy(acc_map_np).unsqueeze(0).unsqueeze(0) |
|
_,_, h, w = acc_map.shape |
|
max_acc_map = F.max_pool2d(acc_map,kernel_size=5, stride=1, padding=2) |
|
acc_map = acc_map * ( (acc_map == max_acc_map).float() ) |
|
flatten_acc_map = acc_map.reshape([-1, ]) |
|
|
|
scores, indices = torch.topk(flatten_acc_map, len(pts), dim=-1, largest=True) |
|
yy = torch.div(indices, w, rounding_mode='floor').unsqueeze(-1) |
|
xx = torch.fmod(indices, w).unsqueeze(-1) |
|
yx = torch.cat((yy, xx), dim=-1) |
|
|
|
yx = yx.detach().cpu().numpy() |
|
|
|
topk_values = scores.detach().cpu().numpy() |
|
indices = idx_map[yx[:, 0], yx[:, 1]] |
|
basis = 5 // 2 |
|
|
|
merged_segments = [] |
|
for yx_pt, max_indice, value in zip(yx, indices, topk_values): |
|
y, x = yx_pt |
|
if max_indice == -1 or value == 0: |
|
continue |
|
segment_list = [] |
|
for y_offset in range(-basis, basis + 1): |
|
for x_offset in range(-basis, basis + 1): |
|
indice = idx_map[y + y_offset, x + x_offset] |
|
cnt = int(acc_map_np[y + y_offset, x + x_offset]) |
|
if indice != -1: |
|
segment_list.append(segments[indice]) |
|
if cnt > 1: |
|
check_cnt = 1 |
|
current_hough = hough[indice] |
|
for new_indice, new_hough in enumerate(hough): |
|
if (current_hough == new_hough).all() and indice != new_indice: |
|
segment_list.append(segments[new_indice]) |
|
check_cnt += 1 |
|
if check_cnt == cnt: |
|
break |
|
group_segments = np.array(segment_list).reshape([-1, 2]) |
|
sorted_group_segments = np.sort(group_segments, axis=0) |
|
x_min, y_min = sorted_group_segments[0, :] |
|
x_max, y_max = sorted_group_segments[-1, :] |
|
|
|
deg = theta[max_indice] |
|
if deg >= 90: |
|
merged_segments.append([x_min, y_max, x_max, y_min]) |
|
else: |
|
merged_segments.append([x_min, y_min, x_max, y_max]) |
|
|
|
|
|
new_segments = np.array(merged_segments) |
|
start = new_segments[:, :2] |
|
end = new_segments[:, 2:] |
|
new_centers = (start + end) / 2.0 |
|
diff = start - end |
|
dist_segments = np.sqrt(np.sum(diff ** 2, axis=-1)) |
|
|
|
|
|
a = diff[:, 1] |
|
b = -diff[:, 0] |
|
c = a * start[:, 0] + b * start[:, 1] |
|
pre_det = a[:, None] * b[None, :] |
|
det = pre_det - np.transpose(pre_det) |
|
|
|
pre_inter_y = a[:, None] * c[None, :] |
|
inter_y = (pre_inter_y - np.transpose(pre_inter_y)) / (det + 1e-10) |
|
pre_inter_x = c[:, None] * b[None, :] |
|
inter_x = (pre_inter_x - np.transpose(pre_inter_x)) / (det + 1e-10) |
|
inter_pts = np.concatenate([inter_x[:, :, None], inter_y[:, :, None]], axis=-1).astype('int32') |
|
|
|
|
|
|
|
''' |
|
dist_segments: |
|
| dist(0), dist(1), dist(2), ...| |
|
dist_inter_to_segment1: |
|
| dist(inter,0), dist(inter,0), dist(inter,0), ... | |
|
| dist(inter,1), dist(inter,1), dist(inter,1), ... | |
|
... |
|
dist_inter_to_semgnet2: |
|
| dist(inter,0), dist(inter,1), dist(inter,2), ... | |
|
| dist(inter,0), dist(inter,1), dist(inter,2), ... | |
|
... |
|
''' |
|
|
|
dist_inter_to_segment1_start = np.sqrt( |
|
np.sum(((inter_pts - start[:, None, :]) ** 2), axis=-1, keepdims=True)) |
|
dist_inter_to_segment1_end = np.sqrt( |
|
np.sum(((inter_pts - end[:, None, :]) ** 2), axis=-1, keepdims=True)) |
|
dist_inter_to_segment2_start = np.sqrt( |
|
np.sum(((inter_pts - start[None, :, :]) ** 2), axis=-1, keepdims=True)) |
|
dist_inter_to_segment2_end = np.sqrt( |
|
np.sum(((inter_pts - end[None, :, :]) ** 2), axis=-1, keepdims=True)) |
|
|
|
|
|
dist_inter_to_segment1 = np.sort( |
|
np.concatenate([dist_inter_to_segment1_start, dist_inter_to_segment1_end], axis=-1), |
|
axis=-1) |
|
dist_inter_to_segment2 = np.sort( |
|
np.concatenate([dist_inter_to_segment2_start, dist_inter_to_segment2_end], axis=-1), |
|
axis=-1) |
|
|
|
|
|
inter_to_start = new_centers[:, None, :] - inter_pts |
|
deg_inter_to_start = np.arctan2(inter_to_start[:, :, 1], inter_to_start[:, :, 0]) * 180 / np.pi |
|
deg_inter_to_start[deg_inter_to_start < 0.0] += 360 |
|
inter_to_end = new_centers[None, :, :] - inter_pts |
|
deg_inter_to_end = np.arctan2(inter_to_end[:, :, 1], inter_to_end[:, :, 0]) * 180 / np.pi |
|
deg_inter_to_end[deg_inter_to_end < 0.0] += 360 |
|
|
|
''' |
|
B -- G |
|
| | |
|
C -- R |
|
B : blue / G: green / C: cyan / R: red |
|
|
|
0 -- 1 |
|
| | |
|
3 -- 2 |
|
''' |
|
|
|
deg1_map, deg2_map = deg_inter_to_start, deg_inter_to_end |
|
|
|
deg_sort = np.sort(np.concatenate([deg1_map[:, :, None], deg2_map[:, :, None]], axis=-1), axis=-1) |
|
|
|
deg_diff_map = np.abs(deg1_map - deg2_map) |
|
|
|
deg_diff_map[deg_diff_map > 180] = 360 - deg_diff_map[deg_diff_map > 180] |
|
|
|
|
|
deg_range = [60, 120] |
|
|
|
corner_dict = {corner_info: [] for corner_info in range(4)} |
|
inter_points = [] |
|
for i in range(inter_pts.shape[0]): |
|
for j in range(i + 1, inter_pts.shape[1]): |
|
|
|
x, y = inter_pts[i, j, :] |
|
deg1, deg2 = deg_sort[i, j, :] |
|
deg_diff = deg_diff_map[i, j] |
|
|
|
check_degree = deg_diff > deg_range[0] and deg_diff < deg_range[1] |
|
|
|
outside_ratio = params['outside_ratio'] |
|
inside_ratio = params['inside_ratio'] |
|
check_distance = ((dist_inter_to_segment1[i, j, 1] >= dist_segments[i] and \ |
|
dist_inter_to_segment1[i, j, 0] <= dist_segments[i] * outside_ratio) or \ |
|
(dist_inter_to_segment1[i, j, 1] <= dist_segments[i] and \ |
|
dist_inter_to_segment1[i, j, 0] <= dist_segments[i] * inside_ratio)) and \ |
|
((dist_inter_to_segment2[i, j, 1] >= dist_segments[j] and \ |
|
dist_inter_to_segment2[i, j, 0] <= dist_segments[j] * outside_ratio) or \ |
|
(dist_inter_to_segment2[i, j, 1] <= dist_segments[j] and \ |
|
dist_inter_to_segment2[i, j, 0] <= dist_segments[j] * inside_ratio)) |
|
|
|
if check_degree and check_distance: |
|
corner_info = None |
|
|
|
if (deg1 >= 0 and deg1 <= 45 and deg2 >= 45 and deg2 <= 120) or \ |
|
(deg2 >= 315 and deg1 >= 45 and deg1 <= 120): |
|
corner_info, color_info = 0, 'blue' |
|
elif (deg1 >= 45 and deg1 <= 125 and deg2 >= 125 and deg2 <= 225): |
|
corner_info, color_info = 1, 'green' |
|
elif (deg1 >= 125 and deg1 <= 225 and deg2 >= 225 and deg2 <= 315): |
|
corner_info, color_info = 2, 'black' |
|
elif (deg1 >= 0 and deg1 <= 45 and deg2 >= 225 and deg2 <= 315) or \ |
|
(deg2 >= 315 and deg1 >= 225 and deg1 <= 315): |
|
corner_info, color_info = 3, 'cyan' |
|
else: |
|
corner_info, color_info = 4, 'red' |
|
continue |
|
|
|
corner_dict[corner_info].append([x, y, i, j]) |
|
inter_points.append([x, y]) |
|
|
|
square_list = [] |
|
connect_list = [] |
|
segments_list = [] |
|
for corner0 in corner_dict[0]: |
|
for corner1 in corner_dict[1]: |
|
connect01 = False |
|
for corner0_line in corner0[2:]: |
|
if corner0_line in corner1[2:]: |
|
connect01 = True |
|
break |
|
if connect01: |
|
for corner2 in corner_dict[2]: |
|
connect12 = False |
|
for corner1_line in corner1[2:]: |
|
if corner1_line in corner2[2:]: |
|
connect12 = True |
|
break |
|
if connect12: |
|
for corner3 in corner_dict[3]: |
|
connect23 = False |
|
for corner2_line in corner2[2:]: |
|
if corner2_line in corner3[2:]: |
|
connect23 = True |
|
break |
|
if connect23: |
|
for corner3_line in corner3[2:]: |
|
if corner3_line in corner0[2:]: |
|
|
|
''' |
|
0 -- 1 |
|
| | |
|
3 -- 2 |
|
square_list: |
|
order: 0 > 1 > 2 > 3 |
|
| x0, y0, x1, y1, x2, y2, x3, y3 | |
|
| x0, y0, x1, y1, x2, y2, x3, y3 | |
|
... |
|
connect_list: |
|
order: 01 > 12 > 23 > 30 |
|
| line_idx01, line_idx12, line_idx23, line_idx30 | |
|
| line_idx01, line_idx12, line_idx23, line_idx30 | |
|
... |
|
segments_list: |
|
order: 0 > 1 > 2 > 3 |
|
| line_idx0_i, line_idx0_j, line_idx1_i, line_idx1_j, line_idx2_i, line_idx2_j, line_idx3_i, line_idx3_j | |
|
| line_idx0_i, line_idx0_j, line_idx1_i, line_idx1_j, line_idx2_i, line_idx2_j, line_idx3_i, line_idx3_j | |
|
... |
|
''' |
|
square_list.append(corner0[:2] + corner1[:2] + corner2[:2] + corner3[:2]) |
|
connect_list.append([corner0_line, corner1_line, corner2_line, corner3_line]) |
|
segments_list.append(corner0[2:] + corner1[2:] + corner2[2:] + corner3[2:]) |
|
|
|
def check_outside_inside(segments_info, connect_idx): |
|
|
|
if connect_idx == segments_info[0]: |
|
check_dist_mat = dist_inter_to_segment1 |
|
else: |
|
check_dist_mat = dist_inter_to_segment2 |
|
|
|
i, j = segments_info |
|
min_dist, max_dist = check_dist_mat[i, j, :] |
|
connect_dist = dist_segments[connect_idx] |
|
if max_dist > connect_dist: |
|
return 'outside', min_dist, 0, 1 |
|
else: |
|
return 'inside', min_dist, -1, -1 |
|
|
|
top_square = None |
|
|
|
try: |
|
map_size = input_shape[0] / 2 |
|
squares = np.array(square_list).reshape([-1, 4, 2]) |
|
score_array = [] |
|
connect_array = np.array(connect_list) |
|
segments_array = np.array(segments_list).reshape([-1, 4, 2]) |
|
|
|
|
|
squares_rollup = np.roll(squares, 1, axis=1) |
|
squares_rolldown = np.roll(squares, -1, axis=1) |
|
vec1 = squares_rollup - squares |
|
normalized_vec1 = vec1 / (np.linalg.norm(vec1, axis=-1, keepdims=True) + 1e-10) |
|
vec2 = squares_rolldown - squares |
|
normalized_vec2 = vec2 / (np.linalg.norm(vec2, axis=-1, keepdims=True) + 1e-10) |
|
inner_products = np.sum(normalized_vec1 * normalized_vec2, axis=-1) |
|
squares_degree = np.arccos(inner_products) * 180 / np.pi |
|
|
|
|
|
overlap_scores = [] |
|
degree_scores = [] |
|
length_scores = [] |
|
|
|
for connects, segments, square, degree in zip(connect_array, segments_array, squares, squares_degree): |
|
''' |
|
0 -- 1 |
|
| | |
|
3 -- 2 |
|
|
|
# segments: [4, 2] |
|
# connects: [4] |
|
''' |
|
|
|
|
|
cover = 0 |
|
perimeter = 0 |
|
|
|
square_length = [] |
|
|
|
for start_idx in range(4): |
|
end_idx = (start_idx + 1) % 4 |
|
|
|
connect_idx = connects[start_idx] |
|
start_segments = segments[start_idx] |
|
end_segments = segments[end_idx] |
|
|
|
start_point = square[start_idx] |
|
end_point = square[end_idx] |
|
|
|
|
|
start_position, start_min, start_cover_param, start_peri_param = check_outside_inside(start_segments, |
|
connect_idx) |
|
end_position, end_min, end_cover_param, end_peri_param = check_outside_inside(end_segments, connect_idx) |
|
|
|
cover += dist_segments[connect_idx] + start_cover_param * start_min + end_cover_param * end_min |
|
perimeter += dist_segments[connect_idx] + start_peri_param * start_min + end_peri_param * end_min |
|
|
|
square_length.append( |
|
dist_segments[connect_idx] + start_peri_param * start_min + end_peri_param * end_min) |
|
|
|
overlap_scores.append(cover / perimeter) |
|
|
|
|
|
''' |
|
deg0 vs deg2 |
|
deg1 vs deg3 |
|
''' |
|
deg0, deg1, deg2, deg3 = degree |
|
deg_ratio1 = deg0 / deg2 |
|
if deg_ratio1 > 1.0: |
|
deg_ratio1 = 1 / deg_ratio1 |
|
deg_ratio2 = deg1 / deg3 |
|
if deg_ratio2 > 1.0: |
|
deg_ratio2 = 1 / deg_ratio2 |
|
degree_scores.append((deg_ratio1 + deg_ratio2) / 2) |
|
|
|
|
|
''' |
|
len0 vs len2 |
|
len1 vs len3 |
|
''' |
|
len0, len1, len2, len3 = square_length |
|
len_ratio1 = len0 / len2 if len2 > len0 else len2 / len0 |
|
len_ratio2 = len1 / len3 if len3 > len1 else len3 / len1 |
|
length_scores.append((len_ratio1 + len_ratio2) / 2) |
|
|
|
|
|
|
|
overlap_scores = np.array(overlap_scores) |
|
overlap_scores /= np.max(overlap_scores) |
|
|
|
degree_scores = np.array(degree_scores) |
|
|
|
|
|
length_scores = np.array(length_scores) |
|
|
|
|
|
area_scores = np.reshape(squares, [-1, 4, 2]) |
|
area_x = area_scores[:, :, 0] |
|
area_y = area_scores[:, :, 1] |
|
correction = area_x[:, -1] * area_y[:, 0] - area_y[:, -1] * area_x[:, 0] |
|
area_scores = np.sum(area_x[:, :-1] * area_y[:, 1:], axis=-1) - np.sum(area_y[:, :-1] * area_x[:, 1:], axis=-1) |
|
area_scores = 0.5 * np.abs(area_scores + correction) |
|
area_scores /= (map_size * map_size) |
|
|
|
|
|
|
|
centers = np.array([[256 // 2, 256 // 2]], dtype='float32') |
|
|
|
square_centers = np.mean(squares, axis=1) |
|
center2center = np.sqrt(np.sum((centers - square_centers) ** 2)) |
|
center_scores = center2center / (map_size / np.sqrt(2.0)) |
|
|
|
''' |
|
score_w = [overlap, degree, area, center, length] |
|
''' |
|
score_w = [0.0, 1.0, 10.0, 0.5, 1.0] |
|
score_array = params['w_overlap'] * overlap_scores \ |
|
+ params['w_degree'] * degree_scores \ |
|
+ params['w_area'] * area_scores \ |
|
- params['w_center'] * center_scores \ |
|
+ params['w_length'] * length_scores |
|
|
|
best_square = [] |
|
|
|
sorted_idx = np.argsort(score_array)[::-1] |
|
score_array = score_array[sorted_idx] |
|
squares = squares[sorted_idx] |
|
|
|
except Exception as e: |
|
pass |
|
|
|
'''return list |
|
merged_lines, squares, scores |
|
''' |
|
|
|
try: |
|
new_segments[:, 0] = new_segments[:, 0] * 2 / input_shape[1] * original_shape[1] |
|
new_segments[:, 1] = new_segments[:, 1] * 2 / input_shape[0] * original_shape[0] |
|
new_segments[:, 2] = new_segments[:, 2] * 2 / input_shape[1] * original_shape[1] |
|
new_segments[:, 3] = new_segments[:, 3] * 2 / input_shape[0] * original_shape[0] |
|
except: |
|
new_segments = [] |
|
|
|
try: |
|
squares[:, :, 0] = squares[:, :, 0] * 2 / input_shape[1] * original_shape[1] |
|
squares[:, :, 1] = squares[:, :, 1] * 2 / input_shape[0] * original_shape[0] |
|
except: |
|
squares = [] |
|
score_array = [] |
|
|
|
try: |
|
inter_points = np.array(inter_points) |
|
inter_points[:, 0] = inter_points[:, 0] * 2 / input_shape[1] * original_shape[1] |
|
inter_points[:, 1] = inter_points[:, 1] * 2 / input_shape[0] * original_shape[0] |
|
except: |
|
inter_points = [] |
|
|
|
return new_segments, squares, score_array, inter_points |
|
|