File size: 7,128 Bytes
3acffd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0483c7f
 
6d4e0ea
0483c7f
 
 
3acffd5
 
 
 
 
 
 
 
 
 
 
 
0483c7f
 
 
 
 
6d4e0ea
 
 
3acffd5
 
 
 
914f06c
 
 
 
 
d168010
c65db2e
d168010
2ec8da5
 
3acffd5
 
 
 
 
914f06c
 
 
c65db2e
914f06c
0483c7f
3acffd5
 
 
 
0483c7f
3acffd5
914f06c
 
0483c7f
3acffd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0483c7f
3acffd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1bb07d
3acffd5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
from datasets import load_dataset
from collections import Counter, defaultdict
import pandas as pd
from huggingface_hub import list_datasets
import os
import gradio as gr

parti_prompt_results = []
ORG = "diffusers-parti-prompts"
SUBMISSIONS = {
    "sd-v1-5": None,
    "sd-v2-1": None,
    "if-v1-0": None,
    "karlo": None,
}
LINKS = {
    "sd-v1-5": "https://huggingface.co/runwayml/stable-diffusion-v1-5",
    "sd-v2-1": "https://huggingface.co/stabilityai/stable-diffusion-2-1",
    "if-v1-0": "https://huggingface.co/DeepFloyd/IF-I-XL-v1.0",
    "karlo": "https://huggingface.co/kakaobrain/karlo-v1-alpha",
}
MODEL_KEYS = "-".join(SUBMISSIONS.keys())
SUBMISSION_ORG = f"results-{MODEL_KEYS}"

submission_names = list(SUBMISSIONS.keys())
parti_prompt_categories = load_dataset(os.path.join(ORG, "sd-v1-5"))["train"]["Category"]
parti_prompt_challenge = load_dataset(os.path.join(ORG, "sd-v1-5"))["train"]["Challenge"]


def load_submissions():
    all_datasets = list_datasets(author=SUBMISSION_ORG)
    relevant_ids = [d.id for d in all_datasets]
    
    ids = defaultdict(list)
    challenges = defaultdict(list)
    categories = defaultdict(list)

    for _id in relevant_ids:
        ds = load_dataset(_id)["train"]
        for result, image_id in zip(ds["result"], ds["id"]):
            ids[result].append(image_id)
            challenges[parti_prompt_challenge[image_id]].append(result)
            categories[parti_prompt_categories[image_id]].append(result)
    
    all_values = sum(len(v) for v in ids.values())
    main_dict = {k: '{:.2%}'.format(len(v)/all_values) for k, v in ids.items()}
    challenges = {k: Counter(v) for k, v in challenges.items()}
    categories = {k: Counter(v) for k, v in categories.items()}

    return main_dict, challenges, categories

def sort_by_highest_percentage(df):
    # Convert percentage values to numeric format
    df = df[df.loc[0].sort_values(ascending=False).index]

    return df

def get_dataframe_all():
    main, challenges, categories = load_submissions()
    main_frame = pd.DataFrame([main])

    challenges_frame = pd.DataFrame.from_dict(challenges).fillna(0).T
    challenges_frame = challenges_frame.div(challenges_frame.sum(axis=1), axis=0)
    challenges_frame = challenges_frame.applymap(lambda x: '{:.2%}'.format(x))

    categories_frame = pd.DataFrame.from_dict(categories).fillna(0).T
    categories_frame = categories_frame.div(categories_frame.sum(axis=1), axis=0)
    categories_frame = categories_frame.applymap(lambda x: '{:.2%}'.format(x))

    main_frame = sort_by_highest_percentage(main_frame)

    categories_frame = categories_frame.reindex(columns=main_frame.columns.to_list())
    challenges_frame = challenges_frame.reindex(columns=main_frame.columns.to_list())

    categories_frame = categories_frame.reset_index().rename(columns={'index': 'Category'})
    challenges_frame = challenges_frame.reset_index().rename(columns={'index': 'Challenge'})

    return main_frame, challenges_frame, categories_frame

TITLE = "# Open Parti Prompts Leaderboard"
DESCRIPTION = """
The *Open Parti Prompts Leaderboard* compares state-of-the-art, open-source text-to-image models to each other according to **human preferences**. \n\n
Text-to-image models are notoriously difficult to evaluate. [FID](https://en.wikipedia.org/wiki/Fr%C3%A9chet_inception_distance) and 
[CLIP Score](https://en.wikipedia.org/wiki/Fr%C3%A9chet_inception_distance) are not enough to accurately state whether a text-to-image model can 
**generate "good" images**. "Good" is extremely difficult to put into numbers. \n\n
Instead, the **Open Parti Prompts Leaderboard** uses human feedback from the community to compare images from different text-to-image models to each other.

\n\n

❤️ ***Please take 3 minutes to contribute to the benchmark.*** \n
👉 ***Play one round of [Open Parti Prompts Game](https://huggingface.co/spaces/OpenGenAI/open-parti-prompts) to contribute 10 answers.*** 🤗
"""

EXPLANATION = """\n\n
## How the is data collected 📊 \n\n

In more detail, the [Open Parti Prompts Game](https://huggingface.co/spaces/OpenGenAI/open-parti-prompts) collects human preferences that state which generated image 
best fits a given prompt from the [Parti Prompts](https://huggingface.co/datasets/nateraw/parti-prompts) dataset. Parti Prompts has been designed to challenge
text-to-image models on prompts of varying categories and difficulty. The images have been pre-generated from the models that are compared in this space.
For more information of how the images were created, please refer to [Open Parti Prompts](https://huggingface.co/spaces/OpenGenAI/open-parti-prompts).
The community's answers are then stored and used in this space to give a human-preference-based comparison of the different models. \n\n

Currently the leaderboard includes the following models:
- [sd-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5)
- [sd-v2-1](https://huggingface.co/stabilityai/stable-diffusion-2-1)
- [if-v1-0](https://huggingface.co/DeepFloyd/IF-I-XL-v1.0)
- [karlo](https://huggingface.co/kakaobrain/karlo-v1-alpha) \n\n

In the following you can see three result tables. The first shows the overall comparison of the 4 models. The score states, 
**the percentage at which images generated from the corresponding model are preferred over the image from all other models**. The second and third tables
show you a breakdown analysis per category and per type of challenge as defined by [Parti Prompts](https://huggingface.co/datasets/nateraw/parti-prompts).
"""

GALLERY_COLUMN_NUM = len(SUBMISSIONS)

def refresh():
    return get_dataframe_all()

with gr.Blocks() as demo:
    with gr.Column(visible=True) as intro_view:
        gr.Markdown(TITLE)
        gr.Markdown(DESCRIPTION)
        gr.Markdown(EXPLANATION)

    headers = list(SUBMISSIONS.keys())
    datatype = "str"

    main_df, challenge_df, category_df = get_dataframe_all()

    with gr.Column():
        gr.Markdown("# Open Parti Prompts")
        main_dataframe = gr.Dataframe(
            value=main_df,
            headers=main_df.columns.to_list(),
            datatype="str",
            row_count=main_df.shape[0],
            col_count=main_df.shape[1],
            interactive=False,
        )

    with gr.Column():
        gr.Markdown("## per category")
        cat_dataframe = gr.Dataframe(
            value=category_df,
            headers=category_df.columns.to_list(),
            datatype="str",
            row_count=category_df.shape[0],
            col_count=category_df.shape[1],
            interactive=False,
        )

    with gr.Column():
        gr.Markdown("## per challenge")
        chal_dataframe = gr.Dataframe(
            value=challenge_df,
            headers=challenge_df.columns.to_list(),
            datatype="str",
            row_count=challenge_df.shape[0],
            col_count=challenge_df.shape[1],
            interactive=False,
        )

    with gr.Row():
        refresh_button = gr.Button("Refresh")
        refresh_button.click(refresh, inputs=[], outputs=[main_dataframe, cat_dataframe, chal_dataframe])

demo.launch()