import torch import torch.nn as nn import numpy as np class MultiFrequencyDiscriminator(nn.Module): def __init__(self, nch, window): super(MultiFrequencyDiscriminator, self).__init__() self.nch = nch self.window = window self.hidden_channels = 8 self.eps = torch.finfo(torch.float32).eps self.discriminators = nn.ModuleList([FrequencyDiscriminator(2*nch, self.hidden_channels) for _ in range(len(self.window))]) def forward(self, est, sample_rate=44100): B, nch, _ = est.shape assert nch == self.nch # normalize power est = est / (est.pow(2).sum((1,2)) + self.eps).sqrt().reshape(B, 1, 1) est = est.view(-1, est.shape[-1]) est_outputs = [] est_feature_maps = [] for i in range(len(self.discriminators)): est_spec = torch.stft(est.float(), self.window[i], self.window[i]//2, window=torch.hann_window(self.window[i]).to(est.device).float(), return_complex=True) est_RI = torch.stack([est_spec.real, est_spec.imag], dim=1) est_RI = est_RI.view(B, nch*2, est_RI.shape[-2], est_RI.shape[-1]).type(est.type()) valid_enc = int(est_RI.shape[2] * sample_rate / 44100) est_out, est_feat_map = self.discriminators[i](est_RI[:,:,:valid_enc].contiguous()) est_outputs.append(est_out) est_feature_maps.append(est_feat_map) return est_outputs, est_feature_maps class FrequencyDiscriminator(nn.Module): def __init__(self, in_channels, hidden_channels=512): super(FrequencyDiscriminator, self).__init__() self.eps = torch.finfo(torch.float32).eps self.discriminator = nn.ModuleList() self.discriminator += [ nn.Sequential( nn.utils.spectral_norm(nn.Conv2d(in_channels, hidden_channels, kernel_size=(3, 3), padding=(1, 1), stride=(1, 1))), nn.LeakyReLU(0.2, True) ), nn.Sequential( nn.utils.spectral_norm(nn.Conv2d(hidden_channels, hidden_channels*2, kernel_size=(3, 3), padding=(1, 1), stride=(2, 2))), nn.LeakyReLU(0.2, True) ), nn.Sequential( nn.utils.spectral_norm(nn.Conv2d(hidden_channels*2, hidden_channels*4, kernel_size=(3, 3), padding=(1, 1), stride=(1, 1))), nn.LeakyReLU(0.2, True) ), nn.Sequential( nn.utils.spectral_norm(nn.Conv2d(hidden_channels*4, hidden_channels*8, kernel_size=(3, 3), padding=(1, 1), stride=(2, 2))), nn.LeakyReLU(0.2, True) ), nn.Sequential( nn.utils.spectral_norm(nn.Conv2d(hidden_channels*8, hidden_channels*16, kernel_size=(3, 3), padding=(1, 1), stride=(1, 1))), nn.LeakyReLU(0.2, True) ), nn.Sequential( nn.utils.spectral_norm(nn.Conv2d(hidden_channels*16, hidden_channels*32, kernel_size=(3, 3), padding=(1, 1), stride=(2, 2))), nn.LeakyReLU(0.2, True) ), nn.Conv2d(hidden_channels*32, 1, kernel_size=(3, 3), padding=(1, 1), stride=(1, 1)) ] def forward(self, x): hiddens = [] for layer in self.discriminator: x = layer(x) hiddens.append(x) return x, hiddens[:-1]