angry-meow commited on
Commit
bed46bd
·
1 Parent(s): a4aad6e

Midterm Prototype

Browse files
Files changed (9) hide show
  1. .chainlit/config.toml +84 -0
  2. .env +9 -0
  3. .gitattributes copy +35 -0
  4. .gitignore +1 -0
  5. BuildingAChainlitApp.md +111 -0
  6. Dockerfile +11 -0
  7. app.py +153 -0
  8. chainlit.md +5 -0
  9. requirements.txt +9 -0
.chainlit/config.toml ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [project]
2
+ # Whether to enable telemetry (default: true). No personal data is collected.
3
+ enable_telemetry = true
4
+
5
+ # List of environment variables to be provided by each user to use the app.
6
+ user_env = []
7
+
8
+ # Duration (in seconds) during which the session is saved when the connection is lost
9
+ session_timeout = 3600
10
+
11
+ # Enable third parties caching (e.g LangChain cache)
12
+ cache = false
13
+
14
+ # Follow symlink for asset mount (see https://github.com/Chainlit/chainlit/issues/317)
15
+ follow_symlink = true
16
+
17
+ [features]
18
+ # Show the prompt playground
19
+ prompt_playground = true
20
+
21
+ # Process and display HTML in messages. This can be a security risk (see https://stackoverflow.com/questions/19603097/why-is-it-dangerous-to-render-user-generated-html-or-javascript)
22
+ unsafe_allow_html = false
23
+
24
+ # Process and display mathematical expressions. This can clash with "$" characters in messages.
25
+ latex = false
26
+
27
+ # Authorize users to upload files with messages
28
+ multi_modal = true
29
+
30
+ # Allows user to use speech to text
31
+ [features.speech_to_text]
32
+ enabled = false
33
+ # See all languages here https://github.com/JamesBrill/react-speech-recognition/blob/HEAD/docs/API.md#language-string
34
+ # language = "en-US"
35
+
36
+ [UI]
37
+ # Name of the app and chatbot.
38
+ name = "Chatbot"
39
+
40
+ # Show the readme while the conversation is empty.
41
+ show_readme_as_default = true
42
+
43
+ # Description of the app and chatbot. This is used for HTML tags.
44
+ # description = ""
45
+
46
+ # Large size content are by default collapsed for a cleaner ui
47
+ default_collapse_content = true
48
+
49
+ # The default value for the expand messages settings.
50
+ default_expand_messages = false
51
+
52
+ # Hide the chain of thought details from the user in the UI.
53
+ hide_cot = false
54
+
55
+ # Link to your github repo. This will add a github button in the UI's header.
56
+ # github = ""
57
+
58
+ # Specify a CSS file that can be used to customize the user interface.
59
+ # The CSS file can be served from the public directory or via an external link.
60
+ # custom_css = "/public/test.css"
61
+
62
+ # Override default MUI light theme. (Check theme.ts)
63
+ [UI.theme.light]
64
+ #background = "#FAFAFA"
65
+ #paper = "#FFFFFF"
66
+
67
+ [UI.theme.light.primary]
68
+ #main = "#F80061"
69
+ #dark = "#980039"
70
+ #light = "#FFE7EB"
71
+
72
+ # Override default MUI dark theme. (Check theme.ts)
73
+ [UI.theme.dark]
74
+ #background = "#FAFAFA"
75
+ #paper = "#FFFFFF"
76
+
77
+ [UI.theme.dark.primary]
78
+ #main = "#F80061"
79
+ #dark = "#980039"
80
+ #light = "#FFE7EB"
81
+
82
+
83
+ [meta]
84
+ generated_by = "0.7.700"
.env ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ OPENAI_API_KEY = "sk-proj-VlBPJdI2pTDAj1ZuTR1CT3BlbkFJdPixzv6JsSYgSdeU6iUL"
2
+ ANTRHOPIC_API_KEY = "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"
3
+ SERPER_API_KEY = "e1433dbffb60ed98eb675bf110a3af71075787f7"
4
+ PINECONE_API_KEY = "02477b08-f824-4cda-accc-1104bd9c2268"
5
+ LANGCHAIN_API_KEY = "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"
6
+ LANGCHAIN_TRACING_V2=true
7
+ LANGCHAIN_ENDPOINT='https://api.smith.langchain.com'
8
+ TAVILY_API_KEY="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"
9
+ ZIPCODE_API_KEY="myBqK3rhFoNaVN2TKYWUdLplkZzOwh8uwA1GNqc35LocxwJEU10QohlJMCDbZkIx"
.gitattributes copy ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ __pycache__/
BuildingAChainlitApp.md ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Building a Chainlit App
2
+
3
+ What if we want to take our Week 1 Day 2 assignment - [Pythonic RAG](https://github.com/AI-Maker-Space/AIE4/tree/main/Week%201/Day%202) - and bring it out of the notebook?
4
+
5
+ Well - we'll cover exactly that here!
6
+
7
+ ## Anatomy of a Chainlit Application
8
+
9
+ [Chainlit](https://docs.chainlit.io/get-started/overview) is a Python package similar to Streamlit that lets users write a backend and a front end in a single (or multiple) Python file(s). It is mainly used for prototyping LLM-based Chat Style Applications - though it is used in production in some settings with 1,000,000s of MAUs (Monthly Active Users).
10
+
11
+ The primary method of customizing and interacting with the Chainlit UI is through a few critical [decorators](https://blog.hubspot.com/website/decorators-in-python).
12
+
13
+ > NOTE: Simply put, the decorators (in Chainlit) are just ways we can "plug-in" to the functionality in Chainlit.
14
+
15
+ We'll be concerning ourselves with three main scopes:
16
+
17
+ 1. On application start - when we start the Chainlit application with a command like `chainlit run app.py`
18
+ 2. On chat start - when a chat session starts (a user opens the web browser to the address hosting the application)
19
+ 3. On message - when the users sends a message through the input text box in the Chainlit UI
20
+
21
+ Let's dig into each scope and see what we're doing!
22
+
23
+ ## On Application Start:
24
+
25
+ The first thing you'll notice is that we have the traditional "wall of imports" this is to ensure we have everything we need to run our application.
26
+
27
+ ```python
28
+ import os
29
+ from typing import List
30
+ from chainlit.types import AskFileResponse
31
+ from aimakerspace.text_utils import CharacterTextSplitter, TextFileLoader
32
+ from aimakerspace.openai_utils.prompts import (
33
+ UserRolePrompt,
34
+ SystemRolePrompt,
35
+ AssistantRolePrompt,
36
+ )
37
+ from aimakerspace.openai_utils.embedding import EmbeddingModel
38
+ from aimakerspace.vectordatabase import VectorDatabase
39
+ from aimakerspace.openai_utils.chatmodel import ChatOpenAI
40
+ import chainlit as cl
41
+ ```
42
+
43
+ Next up, we have some prompt templates. As all sessions will use the same prompt templates without modification, and we don't need these templates to be specific per template - we can set them up here - at the application scope.
44
+
45
+ ```python
46
+ system_template = """\
47
+ Use the following context to answer a users question. If you cannot find the answer in the context, say you don't know the answer."""
48
+ system_role_prompt = SystemRolePrompt(system_template)
49
+
50
+ user_prompt_template = """\
51
+ Context:
52
+ {context}
53
+
54
+ Question:
55
+ {question}
56
+ """
57
+ user_role_prompt = UserRolePrompt(user_prompt_template)
58
+ ```
59
+
60
+ > NOTE: You'll notice that these are the exact same prompt templates we used from the Pythonic RAG Notebook in Week 1 Day 2!
61
+
62
+ Following that - we can create the Python Class definition for our RAG pipeline - or *chain*, as we'll refer to it in the rest of this walkthrough.
63
+
64
+ Let's look at the definition first:
65
+
66
+ ```python
67
+ class RetrievalAugmentedQAPipeline:
68
+ def __init__(self, llm: ChatOpenAI(), vector_db_retriever: VectorDatabase) -> None:
69
+ self.llm = llm
70
+ self.vector_db_retriever = vector_db_retriever
71
+
72
+ async def arun_pipeline(self, user_query: str):
73
+ ### RETRIEVAL
74
+ context_list = self.vector_db_retriever.search_by_text(user_query, k=4)
75
+
76
+ context_prompt = ""
77
+ for context in context_list:
78
+ context_prompt += context[0] + "\n"
79
+
80
+ ### AUGMENTED
81
+ formatted_system_prompt = system_role_prompt.create_message()
82
+
83
+ formatted_user_prompt = user_role_prompt.create_message(question=user_query, context=context_prompt)
84
+
85
+
86
+ ### GENERATION
87
+ async def generate_response():
88
+ async for chunk in self.llm.astream([formatted_system_prompt, formatted_user_prompt]):
89
+ yield chunk
90
+
91
+ return {"response": generate_response(), "context": context_list}
92
+ ```
93
+
94
+ Notice a few things:
95
+
96
+ 1. We have modified this `RetrievalAugmentedQAPipeline` from the initial notebook to support streaming.
97
+ 2. In essence, our pipeline is *chaining* a few events together:
98
+ 1. We take our user query, and chain it into our Vector Database to collect related chunks
99
+ 2. We take those contexts and our user's questions and chain them into the prompt templates
100
+ 3. We take that prompt template and chain it into our LLM call
101
+ 4. We chain the response of the LLM call to the user
102
+ 3. We are using a lot of `async` again!
103
+
104
+ #### QUESTION #1:
105
+
106
+ Why do we want to support streaming? What about streaming is important, or useful?
107
+
108
+
109
+
110
+
111
+
Dockerfile ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM python:3.9
2
+ RUN useradd -m -u 1000 user
3
+ USER user
4
+ ENV HOME=/home/user \
5
+ PATH=/home/user/.local/bin:$PATH
6
+ WORKDIR $HOME/app
7
+ COPY --chown=user . $HOME/app
8
+ COPY ./requirements.txt ~/app/requirements.txt
9
+ RUN pip install -r requirements.txt
10
+ COPY . .
11
+ CMD ["chainlit", "run", "app.py", "--port", "7860"]
app.py ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from langchain.prompts import ChatPromptTemplate
2
+ from langchain_huggingface import HuggingFaceEmbeddings
3
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
4
+ from langchain_community.document_loaders import PyMuPDFLoader
5
+ import chainlit as cl
6
+ import os
7
+ from langchain_qdrant import QdrantVectorStore
8
+ from qdrant_client import QdrantClient
9
+ from qdrant_client.http.models import Distance, VectorParams
10
+ from langchain_openai.chat_models import ChatOpenAI
11
+ from operator import itemgetter
12
+ from langchain.schema.output_parser import StrOutputParser
13
+ from langchain.schema.runnable import RunnablePassthrough
14
+ from uuid import uuid4
15
+
16
+ from dotenv import load_dotenv, find_dotenv
17
+
18
+ load_dotenv(find_dotenv())
19
+
20
+ base_rag_prompt_template = """\
21
+ Only answer questions that are related to the context provided. DO NOT answer a question if it is unrelated to the context provided. If you do not know the answer, say "I do not know the answer".
22
+
23
+ Context:
24
+ {context}
25
+
26
+ Question:
27
+ {question}
28
+ """
29
+
30
+ base_rag_prompt = ChatPromptTemplate.from_template(base_rag_prompt_template)
31
+
32
+ recursiveChunker = RecursiveCharacterTextSplitter(
33
+ chunk_size = 600,
34
+ chunk_overlap = 60,
35
+ length_function = len
36
+ )
37
+
38
+ LOCATION = ":memory:"
39
+ COLLECTION_NAME = "Ethical AI RAG"
40
+ VECTOR_SIZE = 384
41
+
42
+ model_name = "sentence-transformers/all-MiniLM-L6-v2"
43
+ untrained_embeddings = HuggingFaceEmbeddings(model_name=model_name)
44
+
45
+ rag_llm = ChatOpenAI(model="gpt-4o-mini")
46
+
47
+ class RetrievalAugmentedQAPipeline:
48
+ def __init__(self, llm: ChatOpenAI(), vector_db_retriever: QdrantVectorStore) -> None:
49
+ self.chain = (
50
+ {"context": itemgetter("question") | vector_db_retriever, "question": itemgetter("question")}
51
+ | RunnablePassthrough.assign(context=itemgetter("context"))
52
+ | {"response": base_rag_prompt | llm, "context": itemgetter("context")}
53
+ )
54
+
55
+ async def arun_pipeline(self, user_query: str):
56
+ # Invoke the chain synchronously and get the result (assumed to be a dict)
57
+ result = self.chain.invoke({"question": user_query})
58
+
59
+ # Async generator to yield only the content part of the tuples, and ignore others
60
+ async def generate_response():
61
+ if isinstance(result, dict) and 'response' in result:
62
+ for chunk in result['response']:
63
+ # If the chunk is a tuple with a "content" field, yield the content
64
+ if isinstance(chunk, tuple) and len(chunk) == 2:
65
+ label, content = chunk
66
+ if label == "content":
67
+ yield content
68
+ else:
69
+ # Ignore tuples that don't have 'content' as the label
70
+ continue
71
+ elif isinstance(chunk, str):
72
+ # If it's already a string, just yield it (edge case)
73
+ yield chunk
74
+ else:
75
+ # Ignore any non-string, non-tuple chunks
76
+ continue
77
+ else:
78
+ # If result does not contain the expected structure, just do nothing
79
+ return
80
+
81
+ # Return the async generator
82
+ return generate_response()
83
+
84
+ @cl.on_chat_start
85
+ async def on_chat_start():
86
+ all_documents = []
87
+ pdf_urls = [
88
+ 'https://www.whitehouse.gov/wp-content/uploads/2022/10/Blueprint-for-an-AI-Bill-of-Rights.pdf',
89
+ 'https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.600-1.pdf'
90
+ ]
91
+
92
+ msg = cl.Message(
93
+ content=f"Loading documents...", disable_human_feedback=True
94
+ )
95
+ await msg.send()
96
+
97
+ for url in pdf_urls:
98
+ # Create a PyMuPDFLoader on that PDF
99
+ loader = PyMuPDFLoader(file_path=url)
100
+ # Load it into a document
101
+ documents = loader.load()
102
+
103
+ # Append each document to the all_documents list
104
+ all_documents.extend(documents)
105
+
106
+ print(f"Processing documents...")
107
+ split_docs = recursiveChunker.split_documents(all_documents)
108
+
109
+ # Create a dict vector store
110
+ qdrant_client = QdrantClient(LOCATION)
111
+
112
+ qdrant_client.create_collection(
113
+ collection_name=COLLECTION_NAME,
114
+ vectors_config=VectorParams(size=VECTOR_SIZE, distance=Distance.COSINE),
115
+ )
116
+
117
+ qdrant_vector_store = QdrantVectorStore(
118
+ client=qdrant_client,
119
+ collection_name=COLLECTION_NAME,
120
+ embedding=untrained_embeddings,
121
+ )
122
+
123
+ uuids = [str(uuid4()) for _ in range(len(split_docs))]
124
+
125
+ qdrant_vector_store.add_documents(documents=split_docs, ids=uuids)
126
+
127
+ retriever = qdrant_vector_store.as_retriever()
128
+
129
+ # Create a chain
130
+ retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline(
131
+ vector_db_retriever=retriever,
132
+ llm=rag_llm
133
+ )
134
+
135
+ # Let the user know that the system is ready
136
+ msg.content = f"Processing done. You can now ask questions!"
137
+ await msg.update()
138
+
139
+ cl.user_session.set("chain", retrieval_augmented_qa_pipeline)
140
+
141
+
142
+ @cl.on_message
143
+ async def main(message):
144
+ chain = cl.user_session.get("chain")
145
+
146
+ msg = cl.Message(content="")
147
+ result = await chain.arun_pipeline(message.content) # Returns the async generator
148
+
149
+ # Streaming each token in the response to the user
150
+ async for stream_resp in result: # Iterating over the async generator directly
151
+ await msg.stream_token(stream_resp)
152
+
153
+ await msg.send()
chainlit.md ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ # Welcome to the AI Q+A App (Prototype)
2
+
3
+ With this application, you can ask questions about the following docuemnts:
4
+ 1. 2022: [Blueprint for an AI Bill of Rights: Making Automated Systems Work for the American People](https://www.whitehouse.gov/wp-content/uploads/2022/10/Blueprint-for-an-AI-Bill-of-Rights.pdf) (PDF)
5
+ 2. 2024: [National Institute of Standards and Technology (NIST) Artificial Intelligent Risk Management Framework](https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.600-1.pdf) (PDF)
requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ chainlit==0.7.700
2
+ langchain
3
+ langchain_huggingface
4
+ langchain_community
5
+ langchain_openai
6
+ qdrant-client
7
+ chainlit
8
+ python-dotenv
9
+ PyMuPDF