Commit
·
a43235d
1
Parent(s):
1318cbe
forgot the chainlit changes
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import os
|
2 |
from typing import List
|
3 |
from chainlit.types import AskFileResponse
|
4 |
-
from aimakerspace.text_utils import CharacterTextSplitter, TextFileLoader
|
5 |
from aimakerspace.openai_utils.prompts import (
|
6 |
UserRolePrompt,
|
7 |
SystemRolePrompt,
|
@@ -47,8 +47,21 @@ class RetrievalAugmentedQAPipeline:
|
|
47 |
|
48 |
return {"response": generate_response(), "context": context_list}
|
49 |
|
50 |
-
text_splitter =
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
def process_text_file(file: AskFileResponse):
|
54 |
import tempfile
|
@@ -72,7 +85,7 @@ async def on_chat_start():
|
|
72 |
# Wait for the user to upload a file
|
73 |
while files == None:
|
74 |
files = await cl.AskFileMessage(
|
75 |
-
content="Please upload a
|
76 |
accept=["text/plain"],
|
77 |
max_size_mb=2,
|
78 |
timeout=180,
|
@@ -86,7 +99,7 @@ async def on_chat_start():
|
|
86 |
await msg.send()
|
87 |
|
88 |
# load the file
|
89 |
-
texts =
|
90 |
|
91 |
print(f"Processing {len(texts)} text chunks")
|
92 |
|
|
|
1 |
import os
|
2 |
from typing import List
|
3 |
from chainlit.types import AskFileResponse
|
4 |
+
from aimakerspace.text_utils import CharacterTextSplitter, TextFileLoader, PDFLoader, SentenceTextSplitter
|
5 |
from aimakerspace.openai_utils.prompts import (
|
6 |
UserRolePrompt,
|
7 |
SystemRolePrompt,
|
|
|
47 |
|
48 |
return {"response": generate_response(), "context": context_list}
|
49 |
|
50 |
+
text_splitter = SentenceTextSplitter()
|
51 |
|
52 |
+
def process_pdf_file(file: AskFileResponse):
|
53 |
+
import tempfile
|
54 |
+
|
55 |
+
with tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=".pdf") as temp_file:
|
56 |
+
temp_file_path = temp_file.name
|
57 |
+
|
58 |
+
with open(temp_file_path, "wb") as f:
|
59 |
+
f.write(file.content)
|
60 |
+
|
61 |
+
pdf_loader = PDFLoader(temp_file_path)
|
62 |
+
documents = pdf_loader.load_documents()
|
63 |
+
texts = text_splitter.split_texts(documents)
|
64 |
+
return texts
|
65 |
|
66 |
def process_text_file(file: AskFileResponse):
|
67 |
import tempfile
|
|
|
85 |
# Wait for the user to upload a file
|
86 |
while files == None:
|
87 |
files = await cl.AskFileMessage(
|
88 |
+
content="Please upload a PDF File file to begin!",
|
89 |
accept=["text/plain"],
|
90 |
max_size_mb=2,
|
91 |
timeout=180,
|
|
|
99 |
await msg.send()
|
100 |
|
101 |
# load the file
|
102 |
+
texts = process_pdf_file(file)
|
103 |
|
104 |
print(f"Processing {len(texts)} text chunks")
|
105 |
|