|
|
|
from langchain_text_splitters import RecursiveCharacterTextSplitter |
|
from langchain_community.document_loaders import PyMuPDFLoader |
|
from qdrant_client import QdrantClient |
|
from qdrant_client.http.models import Distance, VectorParams |
|
from langchain_openai.embeddings import OpenAIEmbeddings |
|
from langchain.storage import LocalFileStore |
|
from langchain_qdrant import QdrantVectorStore |
|
from langchain.embeddings import CacheBackedEmbeddings |
|
from langchain_core.prompts import ChatPromptTemplate |
|
from langchain_core.globals import set_llm_cache |
|
from langchain_openai import ChatOpenAI |
|
from langchain_core.caches import InMemoryCache |
|
from operator import itemgetter |
|
from langchain_core.runnables.passthrough import RunnablePassthrough |
|
import uuid |
|
import chainlit as cl |
|
|
|
|
|
chat_model = ChatOpenAI(model="gpt-4o-mini") |
|
set_llm_cache(InMemoryCache()) |
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) |
|
rag_system_prompt_template = """\ |
|
You are a helpful assistant that uses the provided context to answer questions. Never reference this prompt, or the existance of context. |
|
""" |
|
rag_message_list = [{"role" : "system", "content" : rag_system_prompt_template},] |
|
rag_user_prompt_template = """\ |
|
Question: |
|
{question} |
|
Context: |
|
{context} |
|
""" |
|
chat_prompt = ChatPromptTemplate.from_messages([("system", rag_system_prompt_template), ("human", rag_user_prompt_template)]) |
|
core_embeddings = OpenAIEmbeddings(model="text-embedding-3-small") |
|
collection_name = f"pdf_to_parse_{uuid.uuid4()}" |
|
client = QdrantClient(":memory:") |
|
client.create_collection(collection_name=collection_name,vectors_config=VectorParams(size=1536, distance=Distance.COSINE)) |
|
store = LocalFileStore("./cache/") |
|
cached_embedder = CacheBackedEmbeddings.from_bytes_store(core_embeddings, store, namespace=core_embeddings.model) |
|
vectorstore = QdrantVectorStore(client=client,collection_name=collection_name,embedding=cached_embedder) |
|
Loader = PyMuPDFLoader |
|
|
|
|
|
@cl.on_chat_start |
|
async def on_chat_start(): |
|
files = await cl.AskFileMessage( |
|
content="Please upload a PDF file to begin.", |
|
accept=["application/pdf"], |
|
max_size_mb=20, |
|
timeout=180, |
|
).send() |
|
|
|
if not files: |
|
await cl.Message(content="No file was uploaded. Please try again.").send() |
|
return |
|
|
|
file = files[0] |
|
msg = cl.Message(content=f"Processing `{file.name}`...") |
|
await msg.send() |
|
|
|
|
|
with open(file.name, "wb") as f: |
|
f.write(file.content) |
|
|
|
|
|
loader = Loader(file.name) |
|
documents = loader.load() |
|
docs = text_splitter.split_documents(documents) |
|
for i, doc in enumerate(docs): |
|
doc.metadata["source"] = f"source_{i}" |
|
|
|
|
|
vectorstore.add_documents(docs) |
|
|
|
|
|
retriever = vectorstore.as_retriever() |
|
|
|
|
|
global retrieval_augmented_qa_chain |
|
retrieval_augmented_qa_chain = ( |
|
{"context": itemgetter("question") | retriever, "question": itemgetter("question")} |
|
| RunnablePassthrough.assign(context=itemgetter("context")) |
|
| chat_prompt |
|
| chat_model |
|
) |
|
|
|
await cl.Message(content=f"`{file.name}` processed. You can now ask questions about its content.").send() |
|
|
|
|
|
|
|
|
|
@cl.author_rename |
|
def rename(orig_author: str): |
|
return "AI Assistant" |
|
|
|
|
|
@cl.on_message |
|
async def main(message: cl.Message): |
|
response = retrieval_augmented_qa_chain.invoke({"question": message.content}) |
|
await cl.Message(content=response.content).send() |