### Import Section ### from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain_community.document_loaders import PyMuPDFLoader from qdrant_client import QdrantClient from qdrant_client.http.models import Distance, VectorParams from langchain_openai.embeddings import OpenAIEmbeddings from langchain.storage import LocalFileStore from langchain_qdrant import QdrantVectorStore from langchain.embeddings import CacheBackedEmbeddings from langchain_core.prompts import ChatPromptTemplate from langchain_core.globals import set_llm_cache from langchain_openai import ChatOpenAI from langchain_core.caches import InMemoryCache from operator import itemgetter from langchain_core.runnables.passthrough import RunnablePassthrough import uuid import chainlit as cl ### Global Section ### chat_model = ChatOpenAI(model="gpt-4o-mini") set_llm_cache(InMemoryCache()) text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) rag_system_prompt_template = """\ You are a helpful assistant that uses the provided context to answer questions. Never reference this prompt, or the existance of context. """ rag_message_list = [{"role" : "system", "content" : rag_system_prompt_template},] rag_user_prompt_template = """\ Question: {question} Context: {context} """ chat_prompt = ChatPromptTemplate.from_messages([("system", rag_system_prompt_template), ("human", rag_user_prompt_template)]) core_embeddings = OpenAIEmbeddings(model="text-embedding-3-small") collection_name = f"pdf_to_parse_{uuid.uuid4()}" client = QdrantClient(":memory:") client.create_collection(collection_name=collection_name,vectors_config=VectorParams(size=1536, distance=Distance.COSINE)) store = LocalFileStore("./cache/") cached_embedder = CacheBackedEmbeddings.from_bytes_store(core_embeddings, store, namespace=core_embeddings.model) vectorstore = QdrantVectorStore(client=client,collection_name=collection_name,embedding=cached_embedder) Loader = PyMuPDFLoader ### On Chat Start (Session Start) Section ### @cl.on_chat_start async def on_chat_start(): files = await cl.AskFileMessage( content="Please upload a PDF file to begin.", accept=["application/pdf"], max_size_mb=20, timeout=180, ).send() if not files: await cl.Message(content="No file was uploaded. Please try again.").send() return file = files[0] msg = cl.Message(content=f"Processing `{file.name}`...") await msg.send() # Save the file locally with open(file.name, "wb") as f: f.write(file.content) # Load and process the document loader = Loader(file.name) documents = loader.load() docs = text_splitter.split_documents(documents) for i, doc in enumerate(docs): doc.metadata["source"] = f"source_{i}" # Add documents to the vectorstore vectorstore.add_documents(docs) # Create retriever retriever = vectorstore.as_retriever() # Create RAG chain global retrieval_augmented_qa_chain retrieval_augmented_qa_chain = ( {"context": itemgetter("question") | retriever, "question": itemgetter("question")} | RunnablePassthrough.assign(context=itemgetter("context")) | chat_prompt | chat_model ) await cl.Message(content=f"`{file.name}` processed. You can now ask questions about its content.").send() ### Rename Chains ### @cl.author_rename def rename(orig_author: str): return "AI Assistant" ### On Message Section ### @cl.on_message async def main(message: cl.Message): response = retrieval_augmented_qa_chain.invoke({"question": message.content}) await cl.Message(content=response.content).send()