File size: 7,943 Bytes
92f0e98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
'''
Customized version of pytorch resnet, alexnets.
'''

import numpy, torch, math, os
from torch import nn
from collections import OrderedDict
from torchvision.models import resnet
from torchvision.models.alexnet import model_urls as alexnet_model_urls

class CustomResNet(nn.Module):
    '''
    Customizable ResNet, compatible with pytorch's resnet, but:
     * The top-level sequence of modules can be modified to add
       or remove or alter layers.
     * Extra outputs can be produced, to allow backprop and access
       to internal features.
     * Pooling is replaced by resizable GlobalAveragePooling so that
       any size can be input (e.g., any multiple of 32 pixels).
     * halfsize=True halves striding on the first pooling to
       set the default size to 112x112 instead of 224x224.
    '''
    def __init__(self, size=None, block=None, layers=None, num_classes=1000,
            extra_output=None, modify_sequence=None, halfsize=False):
        standard_sizes = {
            18: (resnet.BasicBlock, [2, 2, 2, 2]),
            34: (resnet.BasicBlock, [3, 4, 6, 3]),
            50: (resnet.Bottleneck, [3, 4, 6, 3]),
            101: (resnet.Bottleneck, [3, 4, 23, 3]),
            152: (resnet.Bottleneck, [3, 8, 36, 3])
        }
        assert (size in standard_sizes) == (block is None) == (layers is None)
        if size in standard_sizes:
            block, layers = standard_sizes[size]
        if modify_sequence is None:
            modify_sequence = lambda x: x
        self.inplanes = 64
        norm_layer = nn.BatchNorm2d
        self._norm_layer = norm_layer # for recent resnet
        self.dilation = 1
        self.groups = 1
        self.base_width = 64
        sequence = modify_sequence([
            ('conv1', nn.Conv2d(3, 64, kernel_size=7, stride=2,
                padding=3, bias=False)),
            ('bn1', norm_layer(64)),
            ('relu', nn.ReLU(inplace=True)),
            ('maxpool', nn.MaxPool2d(3, stride=1 if halfsize else 2,
                padding=1)),
            ('layer1', self._make_layer(block, 64, layers[0])),
            ('layer2', self._make_layer(block, 128, layers[1], stride=2)),
            ('layer3', self._make_layer(block, 256, layers[2], stride=2)),
            ('layer4', self._make_layer(block, 512, layers[3], stride=2)),
            ('avgpool', GlobalAveragePool2d()),
            ('fc', nn.Linear(512 * block.expansion, num_classes))
        ])
        super(CustomResNet, self).__init__()
        for name, layer in sequence:
            setattr(self, name, layer)
        self.extra_output = extra_output

    def _make_layer(self, block, channels, depth, stride=1):
        return resnet.ResNet._make_layer(self, block, channels, depth, stride)

    def forward(self, x):
        extra = []
        for name, module in self._modules.items():
            x = module(x)
            if self.extra_output and name in self.extra_output:
                extra.append(x)
        if self.extra_output:
            return (x,) + tuple(extra)
        return x

class CustomAlexNet(nn.Module):
    '''
    Customizable AlexNet, compatible with pytorch's alexnet, but:
     * The top-level sequence of modules can be modified to add
       or remove or alter layers.
     * Extra outputs can be produced, to allow backprop and access
       to internal features.
     * halfsize=True halves striding on the first convolution to
       allow 119x119 images to be processed rather than 227x227 only.
    '''
    def __init__(self, channels=None, num_classes=1000,
            extra_output=None, modify_sequence=None, halfsize=False):
        if channels is None:
            channels = [3, 64, 192, 384, 256, 256, 4096, 4096]
        if modify_sequence is None:
            modify_sequence = lambda x: x
        sequence = modify_sequence([
            ('conv1', nn.Conv2d(channels[0], channels[1],
                kernel_size=11, stride=4, padding=2)),
            ('relu1', nn.ReLU(inplace=True)),
            ('pool1', nn.MaxPool2d(kernel_size=3, stride=1 if halfsize else 2)),
            ('conv2', nn.Conv2d(channels[1], channels[2],
                kernel_size=5, padding=2)),
            ('relu2', nn.ReLU(inplace=True)),
            ('pool2', nn.MaxPool2d(kernel_size=3, stride=2)),
            ('conv3', nn.Conv2d(channels[2], channels[3],
                kernel_size=3, padding=1)),
            ('relu3', nn.ReLU(inplace=True)),
            ('conv4', nn.Conv2d(channels[3], channels[4],
                kernel_size=3, padding=1)),
            ('relu4', nn.ReLU(inplace=True)),
            ('conv5', nn.Conv2d(channels[4], channels[5],
                kernel_size=3, padding=1)),
            ('relu5', nn.ReLU(inplace=True)),
            ('pool5', nn.MaxPool2d(kernel_size=3, stride=2)),
            ('flatten', Vectorize()),
            ('dropout6', nn.Dropout()),
            ('fc6', nn.Linear(channels[5] * 6 * 6, channels[6])),
            ('relu6', nn.ReLU(inplace=True)),
            ('dropout7', nn.Dropout()),
            ('fc7', nn.Linear(channels[6], channels[7])),
            ('relu7', nn.ReLU(inplace=True)),
            ('fc8', nn.Linear(channels[7], num_classes))
        ])
        super(CustomAlexNet, self).__init__()
        for name, layer in sequence:
            setattr(self, name, layer)
        self.extra_output = extra_output

    def forward(self, x):
        extra = []
        for name, module in self._modules.items():
            x = module(x)
            if self.extra_output and name in self.extra_output:
                extra.append(x)
        if self.extra_output:
            return (x,) + tuple(extra)
        return x

    def load_state_dict(self, state_dict, **kwargs):
        '''
        Translates from pytorch's AlexNet parameter names
        into the custom parameter names.
        '''
        custom_names = [
            ('features.0.', 'conv1.'),
            ('features.3.', 'conv2.'),
            ('features.6.', 'conv3.'),
            ('features.8.', 'conv4.'),
            ('features.10.', 'conv5.'),
            ('classifier.1.', 'fc6.'),
            ('classifier.4.', 'fc7.'),
            ('classifier.6.', 'fc8.')
        ]
        custom_state_dict = {}
        for k, v in state_dict.items():
            for op, np in custom_names:
                if k.startswith(op):
                    k = np + k[len(op):]
                    break
            custom_state_dict[k] = v
        super(CustomAlexNet, self).load_state_dict(custom_state_dict, **kwargs)

class Vectorize(nn.Module):
    def __init__(self):
        super(Vectorize, self).__init__()
    def forward(self, x):
        x = x.view(x.size(0), int(numpy.prod(x.size()[1:])))
        return x

class GlobalAveragePool2d(nn.Module):
    def __init__(self):
        super(GlobalAveragePool2d, self).__init__()
    def forward(self, x):
        x = torch.mean(x.view(x.size(0), x.size(1), -1), dim=2)
        return x

if __name__ == '__main__':
    import torch.utils.model_zoo as model_zoo
    # Verify that at the default settings, pytorch standard pretrained
    # models can be loaded into each of the custom nets.
    print('Loading alexnet')
    model = CustomAlexNet()
    model.load_state_dict(model_zoo.load_url(alexnet_model_urls['alexnet']))
    print('Loading resnet18')
    model = CustomResNet(18)
    model.load_state_dict(model_zoo.load_url(resnet.model_urls['resnet18']))
    print('Loading resnet34')
    model = CustomResNet(34)
    model.load_state_dict(model_zoo.load_url(resnet.model_urls['resnet34']))
    print('Loading resnet50')
    model = CustomResNet(50)
    model.load_state_dict(model_zoo.load_url(resnet.model_urls['resnet50']))
    print('Loading resnet101')
    model = CustomResNet(101)
    model.load_state_dict(model_zoo.load_url(resnet.model_urls['resnet101']))
    print('Loading resnet152')
    model = CustomResNet(152)
    model.load_state_dict(model_zoo.load_url(resnet.model_urls['resnet152']))