Paul Engstler
Initial commit
92f0e98
raw
history blame
4.88 kB
from threading import local
import torch
import wandb
import numpy as np
import PIL.Image
from typing import Iterable
from utils.val_loop_hook import ValidationLoopHook
def _strip_image_from_grid_row(row, gap=5, bg=255):
strip = torch.full(
(row.shape[0] * (row.shape[3] + gap) - gap,
row.shape[1] * (row.shape[3] + gap) - gap), bg, dtype=row.dtype)
for i in range(0, row.shape[0] * row.shape[1]):
strip[(i // row.shape[1]) * (row.shape[2] + gap) : ((i // row.shape[1])+1) * (row.shape[2] + gap) - gap,
(i % row.shape[1]) * (row.shape[3] + gap) : ((i % row.shape[1])+1) * (row.shape[3] + gap) - gap] = row[i // row.shape[1]][i % row.shape[1]]
return PIL.Image.fromarray(strip.numpy())
class ConfusionVisualizer(ValidationLoopHook):
def __init__(self, image_shape: Iterable[int], num_classes: int, num_images: int = 5, num_slices: int = 8):
self.image_shape = image_shape
self.num_images = num_images
self.num_classes = num_classes
self.num_slices = num_slices
self.activations = -99 * torch.ones(self.num_classes, self.num_images)
self.images = torch.zeros(torch.Size([self.num_classes, self.num_images]) + torch.Size(self.image_shape))
def process(self, batch, target_batch, logits_batch, prediction_batch):
image_batch = batch["image"]
with torch.no_grad():
local_activations = torch.amax(logits_batch, dim=-1)
# filter samples where the prediction does not line up with the target
confused_samples = (prediction_batch != target_batch)
# filter public dataset samples
public = torch.tensor(["verse" in id for id in batch["verse_id"]]).type_as(confused_samples)
mask = confused_samples & public
for current_idx in torch.nonzero(mask).squeeze(1):
target_class = target_batch[current_idx]
# next item in local batch has a higher activation than the previous confusions for this class, replace it
if local_activations[current_idx] > torch.min(self.activations[target_class]):
idx_to_replace = torch.argsort(self.activations[target_class])[0]
self.activations[target_class, idx_to_replace] = local_activations[current_idx]
self.images[target_class, idx_to_replace] = image_batch[current_idx].cpu()
def trigger(self, module):
for class_idx in range(self.num_classes):
# determine final order such that the highest activations are placed on top
sorted_idx = torch.argsort(self.activations[class_idx], descending=True)
self.images[class_idx] = self.images[class_idx, sorted_idx]
normalize = lambda x: (x - np.min(x))/np.ptp(x)
if len(self.images.shape) == 6:
# 3D, visualize slices
img_res = self.images[class_idx].shape[-1]
img_slices = torch.linspace(0, img_res-1, self.num_slices+2, dtype=torch.long)[1:-1]
# Show all images slices in a larger combined image
top_confusing_samples = _strip_image_from_grid_row(
torch.stack([
torch.stack([
torch.tensor(
np.uint8(255 * normalize((self.images[class_idx, i, 0, ..., img_slices[s]]).numpy()))
)
for s in range(self.num_slices)])
for i in range(self.num_images if self.num_images < self.images[class_idx].shape[0] else self.images[class_idx].shape[0])])
)
elif len(self.images.shape) == 5:
# 2D
top_confusing_samples = _strip_image_from_grid_row(
torch.stack([
torch.stack([
torch.tensor(
np.uint8(255 * normalize((self.images[class_idx, i, 0, ...]).numpy()))
)
])
for i in range(self.num_images if self.num_images < self.images[class_idx].shape[0] else self.images[class_idx].shape[0])])
)
else:
raise RuntimeError("Unknown image shape found for confusion visualization")
module.logger.experiment.log({
# class_idx represents the ground truth, i.e. these were samples to be classified as class_idx
# but they were predicted to belong to a different class
f"val/top_confusing_of_class_{class_idx}": wandb.Image(top_confusing_samples)
})
def reset(self):
self.activations = -99 * torch.ones(self.num_classes, self.num_images)
self.images = torch.zeros(torch.Size([self.num_classes, self.num_images]) + torch.Size(self.image_shape))