import numpy, math from . import customnet, nethook from collections import OrderedDict import torch.nn import re def make_over5_resnet(halfsize=False): # A resnet with the global pooling layer replaced by a single 1x1 # conv layer, to produce a 512x8x8 featuremap. Also adds a leaky # ReLU to better resemble the distribution of r produced by the GAN. resnet_depth = 18 # Make an encoder model. def change_out(layers): numch = 512 if resnet_depth < 50 else 2048 ind = [i for i, (n, l) in enumerate(layers) if n == 'layer4'][0] + 1 layers[ind:] = [('layer5', torch.nn.Sequential(OrderedDict([ ('conv5', torch.nn.Conv2d(numch, 512, kernel_size=1)), ('relu5', torch.nn.LeakyReLU( inplace=True, negative_slope=0.2)) ])))] return layers encoder = customnet.CustomResNet( resnet_depth, modify_sequence=change_out, halfsize=halfsize) return encoder class HybridLayerNormEncoder(torch.nn.Sequential): def __init__(self, halfsize=False): sequence = [ ('resnet', make_over5_resnet(halfsize=halfsize)), ('inv4', LayerNormEncoder(512, 512)), ('inv3', LayerNormEncoder(512, 512, stride=2)), ('inv2', LayerNormEncoder(512, 512, skip_conv3=True)), ('inv1', Layer1toZNormEncoder()) ] super().__init__(OrderedDict(sequence)) class LayerNormEncoder(torch.nn.Sequential): def __init__(self, chan_in, chan_out=None, stride=1, skip_conv3=False, skip_pnorm=False): if chan_out is None: chan_out = chan_in sequence = [] if not skip_pnorm: sequence.append(('pnorm', PixelNormLayer())) sequence.extend([ ('conv1', torch.nn.Conv2d(chan_in, chan_out, kernel_size=3, padding=1)), ('bn1', torch.nn.BatchNorm2d(chan_out)), ('relu1', torch.nn.LeakyReLU(inplace=True, negative_slope=0.2)), ('conv2', torch.nn.Conv2d(chan_out, chan_out, kernel_size=3, padding=1)), ('bn2', torch.nn.BatchNorm2d(chan_out)), ('relu2', torch.nn.LeakyReLU(inplace=True, negative_slope=0.2)), ]) if not skip_conv3: sequence.append( ('conv3', torch.nn.Conv2d(chan_out, chan_out, kernel_size=1, padding=0, stride=stride))) super().__init__(OrderedDict(sequence)) with torch.no_grad(): for n, p in self.named_parameters(): if n.endswith('.bias'): p.zero_() elif not n.startswith('bn'): torch.nn.init.kaiming_normal_(p) class Layer1toZNormEncoder(torch.nn.Sequential): def __init__(self): super().__init__(OrderedDict([ ('pnorm', PixelNormLayer()), ('conv1', torch.nn.Conv2d(512, 512, kernel_size=4, padding=0)), ('bn1', torch.nn.BatchNorm2d(512)), ('relu1', torch.nn.LeakyReLU(inplace=True, negative_slope=0.2)), ('conv2', torch.nn.Conv2d(512, 512, kernel_size=1, padding=0)), ('pnormout', PixelNormLayer()) ])) with torch.no_grad(): for n, p in self.named_parameters(): if n.endswith('.bias'): p.zero_() elif not n.startswith('bn'): torch.nn.init.kaiming_normal_(p) class ResidualGenerator(nethook.InstrumentedModel): ''' ''' def __init__(self, generator, z, residual_layers): ''' ResidualGenerator(generator, z, ['z', 'layer1', 'layer2']) Returns a model that computes generator(z), but which has additional internal parameters dz, d1, d2, etc, that adjust the computation so that the output of layerN is adjusted by dN, for example, if a network normally computes x = layer4(layer3(layer2(layer1(z)))), then specifying the innermost three layers will cause this to compute: x = layer4(d3 + layer3(d2 + layer2(d1 + layer1(dz + z)))) ''' # First temporarily hook the layers of the generator to # collect initial values (and output shapes) of each layer. with torch.no_grad(), nethook.InstrumentedModel(generator) as g: g.retain_layers([n for n in residual_layers if n != 'z']) init_out = g(z) init_layers = g.retained_features() init_layers['z'] = z # Then, permanently hook the layers of the generator to add # residual adjustments dz, d1, d2, etc at each layer. super().__init__(generator) for k, v in init_layers.items(): # layer3.conv1 -> 3_conv1, shortened name. name = k.replace('layer', '', 1).replace('.', '_') # 3_conv1 -> self.init_3_conv1, buffer with unperturbed value self.register_buffer('init_%s' % name, v.clone()) # Add parameter 'dz', etc for any variable listed in residuals if k in residual_layers: # 3_conv1 -> self.d3_conv1, parameter initialized to 0 dname = 'd' + name setattr(self, dname, torch.nn.Parameter(torch.zeros_like(v))) # Change model to add self.d[name] after computing layer k. if k != 'z': self.edit_layer(k, add_adjustment, attr=dname) def forward(self): return super().forward(self.init_z + getattr(self, 'dz', 0)) class FixedGANPriorGenerator(nethook.InstrumentedModel): ''' Combines the ideas of ResidualGenerator and GANPriorRUNetGenerator. ''' def __init__(self, generator, z, additive=False): self.additive = additive # To begin with, we want to glue skip connections into our # generator. Modify its 'forward' method to accept skip args. generator = SkipAdjustedSequence(generator) skip_layers = ['layer8', 'layer10', 'layer12', 'layer14'] # Gather some initial values programmatically with a temporary hook. with torch.no_grad(), nethook.InstrumentedModel(generator) as g: g.retain_layers([n for n in ( skip_layers) if n != 'z']) init_out = g(z) init_layers = g.retained_features() init_layers['z'] = z # Then, permanently hook the layers of the generator to add # residual adjustments dz, d1, d2, etc at each layer. super().__init__(generator) for k, v in init_layers.items(): # Record all the init_N values for reporting and reference. name = k.replace('layer', '', 1).replace('.', '_') self.register_buffer('init_%s' % name, v.clone()) # Now the deep image prior u-net side, melding with pixels. # Start with a fixed random featuremap seed = 1 rng = numpy.random.RandomState(seed) self.register_buffer('noise', torch.from_numpy( rng.randn(1, 32, 256, 256)).float()) # put through 8 conv layers self.down14 = UnetDownsample(32, 32, self.init_14.size(1), 4, stride=1, rng=rng) self.down12 = UnetDownsample(32, 32, self.init_12.size(1), 4, rng=rng) self.down10 = UnetDownsample(32, 32, self.init_10.size(1), 4, rng=rng) self.down8 = UnetDownsample(32, 0, self.init_8.size(1), 4, rng=rng) # Finally, also retain the editing layer, layer4 self.train(True) def forward(self, z=None): # First run the deep-image-prior noise maker. z14, s14 = self.down14(self.noise) z12, s12 = self.down12(z14) z10, s10 = self.down10(z12) _, s8 = self.down8(z10) # _, s6 = self.down6(z8) # _, s4 = self.down4(z6) if z is None: z = self.init_z # Collect together adjustments before running the generator. if self.additive: x = super().forward(z, add_layer8=(s8), add_layer10=(s10), add_layer12=(s12), add_layer14=(s14), ) else: x = super().forward(z, mult_layer8=(1 + s8), mult_layer10=(1 + s10), mult_layer12=(1 + s12), mult_layer14=(1 + s14), ) return dict( x=x, # Note: this is retained before it is multiplied s8=s8, s10=s10, s12=s12, s14=s14) class BaselineTunedDirectGenerator(nethook.InstrumentedModel): ''' Combines the ideas of ResidualGenerator and GANPriorRUNetGenerator. ''' def __init__(self, generator, z, tune_layers=None): # To begin with, we want to glue skip connections into our # generator. Modify its 'forward' method to accept skip args. generator = SkipAdjustedSequence(generator) if tune_layers is None: tune_layers = ['layer8', 'layer10', 'layer12', 'layer14'] # Gather some initial values programmatically with a temporary hook. with torch.no_grad(), nethook.InstrumentedModel(generator) as g: g.retain_layers([n for n in ( tune_layers) if n != 'z']) init_out = g(z) init_layers = g.retained_features() init_layers['z'] = z # Then, permanently hook the layers of the generator to add # residual adjustments dz, d1, d2, etc at each layer. super().__init__(generator) self.adjustments = [] for k, v in init_layers.items(): # Record all the init_N values for reporting and reference. name = k.replace('layer', '', 1).replace('.', '_') dname = 'd%s' % name self.register_buffer('init_%s' % name, v.clone()) if 'layer' in k: self.adjustments.append(('mult_%s' % k, dname)) setattr(self, dname, torch.nn.Parameter(torch.zeros_like(v))) self.train(True) def forward(self, z=None, **kwargs): # Collect together adjustments before running the generator. kwadj = {k: 1 + kwargs.get(dname, getattr(self, dname)) # Allow kwargs to override for k, dname in self.adjustments} if z is None: z = self.init_z x = super().forward(z, **kwadj) kwout = {dname: getattr(self, dname) for k, dname in self.adjustments} return dict(x=x, **kwout) class SkipAdjustedSequence(torch.nn.Sequential): def __init__(self, sequential, share_weights=False): ''' Creates a subsequence of a pytorch Sequential model, copying over modules together with parameters for the subsequence. Only modules from first_layer to last_layer (inclusive) are included. If share_weights is True, then references the original modules and their parameters without copying them. Otherwise, by default, makes a separate brand-new copy. ''' included_children = OrderedDict() for name, layer in sequential._modules.items(): included_children[name] = layer if share_weights else ( copy.deepcopy(layer)) if not len(included_children): raise ValueError('Empty subsequence') super().__init__(OrderedDict(included_children)) def forward(this, x, **kwargs): ''' Runs the sequence, except after each step 'layer', adds any 'add_layer' value from kwargs to the output; similarly multiplies any 'mult_layer' value from kwargs if present. ''' seen = set() for name, layer in this._modules.items(): x = layer(x) add = kwargs.get('add_' + name, None) if add is not None: x = x + add seen.add('add_' + name) mult = kwargs.get('mult_' + name, None) if mult is not None: x = x * mult seen.add('mult_' + name) for name in kwargs.keys(): assert name in seen, '%s not applied' % name return x class PixelNormLayer(torch.nn.Module): def __init__(self): super(PixelNormLayer, self).__init__() def forward(self, x): return x / torch.sqrt(torch.mean(x**2, dim=1, keepdim=True) + 1e-8) def add_adjustment(x, idecoder, attr): adjustment = getattr(idecoder, attr) x = x + adjustment return x