Spaces:
Running
Running
File size: 1,515 Bytes
a69769d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import torch
import gradio as gr
from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler
from diffusers.utils import export_to_gif
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16
# 加載模型
step = 4 # Options: [1, 2, 4, 8]
repo = "ByteDance/AnimateDiff-Lightning"
ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
base = "emilianJR/epiCRealism"
adapter = MotionAdapter().to(device, dtype)
adapter.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device))
pipe = AnimateDiffPipeline.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device)
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")
# 定義生成 GIF 的函數
def text_to_gif(prompt):
output = pipe(prompt, guidance_scale=1.0, num_inference_steps=step)
gif_path = "animation.gif"
export_to_gif(output.frames[0], gif_path)
return gif_path
# 設置 Gradio 界面
with gr.Blocks() as demo:
gr.Markdown("# Text to GIF Generator using AnimateDiff")
prompt = gr.Textbox(label="Enter your prompt", placeholder="Describe the animation you want to create")
gif_output = gr.Image(label="Generated GIF")
generate_btn = gr.Button("Generate GIF")
generate_btn.click(fn=text_to_gif, inputs=prompt, outputs=gif_output)
# 啟動 Gradio 應用
demo.launch()
|