from fastapi import FastAPI from pydantic import BaseModel from model.model import LLM import torch app = FastAPI(docs_url="/swagger-ui.html") class InputText(BaseModel): text: str # "bigscience/bloomz-1b1" model_tag = "facebook/opt-125m" model = LLM(model_name = model_tag, device = "cuda" if torch.cuda.is_available() else "cpu") """ @app.get("/") async def root(): return {"message": "Technical challenge OK"} """ @app.get("/") async def docs_redirect(): response = RedirectResponse(url='/swagger-ui.html') return response @app.post("/language-detection") def language_detection(text): return {"language": model.language_detection(text)} @app.post("/entity-recognition") def ner(text): return model.entity_recognition(text)