import re from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig class LLM: def __init__(self, model_name, device="cpu"): # Model and tokenizer initialization self.model, self.tokenizer = self.load_model_and_tokenizer(model_name, device) # BCP-47 codes for the 3 available languages + unknown language self.lang_codes = { "english": "en", "español": "es", "française": "fr", "unknown": "unk"} def load_model_and_tokenizer(self, model_name, device): # Configuration for quantization (only works on GPU) bnb_config = BitsAndBytesConfig( use_4bit=True, bnb_4bit_compute_dtype="float16", bnb_4bit_quant_type="nf4", use_nested_quant=False, ) # Load model and tokenizer model = AutoModelForCausalLM.from_pretrained( model_name, quantization_config=bnb_config ).to(device) tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) if tokenizer.pad_token_id is None: tokenizer.pad_token_id = tokenizer.eos_token_id return model, tokenizer def language_detection(self, input_text): # Prompt with one shot for each language prompt = f"""Identify the language of the following sentences. Options: 'english', 'español', 'française' . * (english) * (español) * (française) * <{input_text}>""" # Generation and extraction of the language tag answer_ids = self.model.generate(**self.tokenizer([prompt], return_tensors="pt"), max_new_tokens=10) answer = self.tokenizer.batch_decode(answer_ids, skip_special_tokens=False)[0].split(prompt)[1] pattern = r'\b(?:' + '|'.join(map(re.escape, self.lang_codes.keys())) + r')\b' lang = re.search(pattern, answer, flags=re.IGNORECASE) # Returns tag identified or 'unk' if none is detected return self.lang_codes[lang.group()] if lang else self.lang_codes["unknown"] def entity_recognition(self, input_text): # Prompt design prompt = f"""Identify NER tags of 'location', 'organization', 'person' in the text. * Text: I saw Carmelo Anthony before the Knicks game in New York. Carmelo Anthony is retired now * Tags: (person), (organization), (location), (person) * Text: I will work from Spain for LanguageWire because Spain is warmer than Denmark * Tags: (location), (organization), (location), (location) * Text: Tesla founder Elon Musk is so rich that bought Twitter just for fun * Tags: (organization), (person), (organization) * Text: {input_text} * Tags: """ print(prompt) # Generation and extraction of the identified entities answer_ids = self.model.generate(**self.tokenizer([prompt], return_tensors="pt"), max_new_tokens=100) answer = self.tokenizer.batch_decode(answer_ids, skip_special_tokens=True)[0].split(prompt)[1] entities = re.findall(r'<(.*?)>', answer) # Count of the tags detected (ignoring the type of entity) entities_count = {} for entity in entities: if entity in entities_count: entities_count[entity] += 1 else: entities_count[entity] = 1 # Returns a dictionary return entities_count