import gradio as gr import torch import torchvision.transforms as transforms from PIL import Image import OS file_urls = [ "https://www.bing.com/images/search?view=detailV2&ccid=YaFiK%2bN6&id=D84622E2396A39F168D279F32AC31F05096187AB&thid=OIP.YaFiK-N6iDdJR6B6DMBHpgHaFj&mediaurl=https%3a%2f%2fwww.practicalcaravan.com%2fwp-content%2fuploads%2f2016%2f03%2f5907569-scaled.jpg&exph=1921&expw=2560&q=audi+a4+car+image&simid=608053806389945942&FORM=IRPRST&ck=7DDB4BC7AA27F8E3EDA4433E669D3CC4&selectedIndex=6&ajaxhist=0&ajaxserp=0","https://www.bing.com/images/search?view=detailV2&ccid=CHONQxwQ&id=B8BCD1A5420658017C772CF149AFB7D24F2F8322&thid=OIP.CHONQxwQrclsFp-VXh4aOQHaFD&mediaurl=https%3a%2f%2fs3-eu-west-1.amazonaws.com%2feurekar-v2%2fuploads%2fimages%2foriginal%2fa4salfront.jpg&exph=1025&expw=1500&q=audi+a4+car+image&simid=608024308599848180&FORM=IRPRST&ck=3A2EA226332024ECB13B2F27682C15CA&selectedIndex=3&ajaxhist=0&ajaxserp=0" ] def download_file(url, save_name): url = url if not os.path.exists(save_name): file = requests.get(url) open(save_name, 'wb').write(file.content) for i, url in enumerate(file_urls): if 'mp4' in file_urls[i]: download_file( file_urls[i], f"video.mp4" ) else: download_file( file_urls[i], f"image_{i}.jpg" ) model = 'cifar_net.pth' path = [['image_0.jpg'], ['image_1.jpg']] video_path = [['video.mp4']] def show_preds_image(image_path): image = cv2.imread(image_path) outputs = model.predict(source=image_path) results = outputs[0].cpu().numpy() for i, det in enumerate(results.boxes.xyxy): cv2.rectangle( image, (int(det[0]), int(det[1])), (int(det[2]), int(det[3])), color=(0, 0, 255), thickness=2, lineType=cv2.LINE_AA ) return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) inputs_image = [ gr.components.Image(type="filepath", label="Input Image"), ] outputs_image = [ gr.components.Image(type="numpy", label="Output Image"), ] interface_image = gr.Interface( fn=show_preds_image, inputs=inputs_image, outputs=outputs_image, title="Car detector", examples=path, cache_examples=False, ) gr.TabbedInterface( [interface_image], tab_names=['Image inference'] ).queue().launch()