Spaces:
Runtime error
Runtime error
Run model and prior in half precision.
Browse files
app.py
CHANGED
@@ -118,20 +118,17 @@ def decode(img_seq, shape=(32,32)):
|
|
118 |
return img
|
119 |
|
120 |
model_path = hf_hub_download(repo_id=model_repo, filename=model_file)
|
121 |
-
|
122 |
-
model =
|
123 |
-
model.load_state_dict(
|
124 |
model.eval().requires_grad_()
|
125 |
|
126 |
prior_path = hf_hub_download(repo_id=model_repo, filename=prior_file)
|
127 |
-
|
128 |
-
prior
|
129 |
-
prior.load_state_dict(prior_ckpt)
|
130 |
prior.eval().requires_grad_(False)
|
131 |
diffuzz = Diffuzz(device=device)
|
132 |
|
133 |
-
del prior_ckpt, state_dict
|
134 |
-
|
135 |
# -----
|
136 |
|
137 |
def infer(prompt, negative_prompt):
|
|
|
118 |
return img
|
119 |
|
120 |
model_path = hf_hub_download(repo_id=model_repo, filename=model_file)
|
121 |
+
model = DenoiseUNet(num_labels=8192, c_clip=1024, c_hidden=1280, down_levels=[1, 2, 8, 32], up_levels=[32, 8, 2, 1])
|
122 |
+
model = model.to(device).half()
|
123 |
+
model.load_state_dict(torch.load(model_path, map_location=device))
|
124 |
model.eval().requires_grad_()
|
125 |
|
126 |
prior_path = hf_hub_download(repo_id=model_repo, filename=prior_file)
|
127 |
+
prior = PriorModel().to(device).half()
|
128 |
+
prior.load_state_dict(torch.load(prior_path, map_location=device))
|
|
|
129 |
prior.eval().requires_grad_(False)
|
130 |
diffuzz = Diffuzz(device=device)
|
131 |
|
|
|
|
|
132 |
# -----
|
133 |
|
134 |
def infer(prompt, negative_prompt):
|