File size: 8,286 Bytes
4e9395b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a08d5f
 
 
 
 
 
 
 
 
 
 
 
 
 
9ca22c6
5a08d5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c92b2c9
5a08d5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import base64
import re
from tempfile import TemporaryDirectory
from math import atan, cos, sin
from typing import Dict, Optional, Tuple
from xml.etree import ElementTree as ET
from xml.etree.ElementTree import Element

import numpy as np
import PyPDF2
from PyPDF2 import PdfFileMerger
from doctr.io import DocumentFile
from doctr.models import ocr_predictor
from PIL import Image
from reportlab.lib.colors import black
from reportlab.lib.units import inch
from reportlab.lib.utils import ImageReader
from reportlab.pdfgen.canvas import Canvas




class HocrParser():

    def __init__(self):
        self.box_pattern = re.compile(r'bbox((\s+\d+){4})')
        self.baseline_pattern = re.compile(r'baseline((\s+[\d\.\-]+){2})')

    def _element_coordinates(self, element: Element) -> Dict:
        """
        Returns a tuple containing the coordinates of the bounding box around
        an element
        """
        out = out = {'x1': 0, 'y1': 0, 'x2': 0, 'y2': 0}
        if 'title' in element.attrib:
            matches = self.box_pattern.search(element.attrib['title'])
            if matches:
                coords = matches.group(1).split()
                out = {'x1': int(coords[0]), 'y1': int(
                    coords[1]), 'x2': int(coords[2]), 'y2': int(coords[3])}
        return out

    def _get_baseline(self, element: Element) -> Tuple[float, float]:
        """
        Returns a tuple containing the baseline slope and intercept.
        """
        if 'title' in element.attrib:
            matches = self.baseline_pattern.search(
                element.attrib['title']).group(1).split()
            if matches:
                return float(matches[0]), float(matches[1])
        return (0.0, 0.0)

    def _pt_from_pixel(self, pxl: Dict, dpi: int) -> Dict:
        """
        Returns the quantity in PDF units (pt) given quantity in pixels
        """
        pt = [(c / dpi * inch) for c in pxl.values()]
        return {'x1': pt[0], 'y1': pt[1], 'x2': pt[2], 'y2': pt[3]}

    def _get_element_text(self, element: Element) -> str:
        """
        Return the textual content of the element and its children
        """
        text = ''
        if element.text is not None:
            text += element.text
        for child in element:
            text += self._get_element_text(child)
        if element.tail is not None:
            text += element.tail
        return text

    def export_pdfa(self,
                    out_filename: str,
                    hocr: ET.ElementTree,
                    image: Optional[np.ndarray] = None,
                    fontname: str = "Times-Roman",
                    fontsize: int = 12,
                    invisible_text: bool = True,
                    add_spaces: bool = True,
                    dpi: int = 300):
        """
        Generates a PDF/A document from a hOCR document.
        """

        width, height = None, None
        # Get the image dimensions
        for div in hocr.findall(".//div[@class='ocr_page']"):
            coords = self._element_coordinates(div)
            pt_coords = self._pt_from_pixel(coords, dpi)
            width, height = pt_coords['x2'] - \
                pt_coords['x1'], pt_coords['y2'] - pt_coords['y1']
            # after catch break loop
            break
        if width is None or height is None:
            raise ValueError("Could not determine page size")

        pdf = Canvas(out_filename, pagesize=(width, height), pageCompression=1)

        span_elements = [element for element in hocr.iterfind(".//span")]
        for line in span_elements:
            if 'class' in line.attrib and line.attrib['class'] == 'ocr_line' and line is not None:
                # get information from xml
                pxl_line_coords = self._element_coordinates(line)
                line_box = self._pt_from_pixel(pxl_line_coords, dpi)

                # compute baseline
                slope, pxl_intercept = self._get_baseline(line)
                if abs(slope) < 0.005:
                    slope = 0.0
                angle = atan(slope)
                cos_a, sin_a = cos(angle), sin(angle)
                intercept = pxl_intercept / dpi * inch
                baseline_y2 = height - (line_box['y2'] + intercept)

                # configure options
                text = pdf.beginText()
                text.setFont(fontname, fontsize)
                pdf.setFillColor(black)
                if invisible_text:
                    text.setTextRenderMode(3)  # invisible text

                # transform overlayed text
                text.setTextTransform(
                    cos_a, -sin_a, sin_a, cos_a, line_box['x1'], baseline_y2)

                elements = line.findall(".//span[@class='ocrx_word']")
                for elem in elements:
                    elemtxt = self._get_element_text(elem).strip()
                    # replace unsupported characters
                    elemtxt = elemtxt.translate(str.maketrans(
                        {'ff': 'ff', 'ffi': 'f‌f‌i', 'ffl': 'f‌f‌l', 'fi': 'fi', 'fl': 'fl'}))
                    if not elemtxt:
                        continue

                    # compute string width
                    pxl_coords = self._element_coordinates(elem)
                    box = self._pt_from_pixel(pxl_coords, dpi)
                    if add_spaces:
                        elemtxt += ' '
                        box_width = box['x2'] + pdf.stringWidth(elemtxt, fontname, fontsize) - box['x1']
                    else:
                        box_width = box['x2'] - box['x1']
                    font_width = pdf.stringWidth(elemtxt, fontname, fontsize)

                    # Adjust relative position of cursor
                    cursor = text.getStartOfLine()
                    dx = box['x1'] - cursor[0]
                    dy = baseline_y2 - cursor[1]
                    text.moveCursor(dx, dy)

                    # suppress text if it is 0 units wide
                    if font_width > 0:
                        text.setHorizScale(100 * box_width / font_width)
                        text.textOut(elemtxt)
                pdf.drawText(text)

        # overlay image if provided
        if image is not None:
            pdf.drawImage(ImageReader(Image.fromarray(image)),
                          0, 0, width=width, height=height)
        pdf.save()



from langchain_huggingface import HuggingFaceEmbeddings
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
from langchain_community.vectorstores import Chroma
from langchain.schema import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
import torch

embedding_model_name = 'l3cube-pune/punjabi-sentence-similarity-sbert'

model_kwargs = {'device':'cpu',"trust_remote_code": True}

embeddings = HuggingFaceEmbeddings(
    model_name=embedding_model_name,
    model_kwargs=model_kwargs
)

vectorstore = None



def read_file(data: str) -> Document:
    f = open(data,'r')
    content = f.read()
    f.close()
    doc = Document(page_content=content, metadata={"name": data.split('/')[-1]})
    return doc

text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=400)

def add_doc(data,vectorstore):
    doc = read_file(data)
    splits = text_splitter.split_documents([doc])
    vectorstore = Chroma.from_documents(documents=splits, embedding=embeddings)
    retriever = vectorstore.as_retriever(search_kwargs={'k':1})
    return retriever, vectorstore

def delete_doc(delete_name,vectorstore):
    delete_doc_ids = []
    for idx,name in enumerate(vectorstore.get()['metadatas']):
        if name['name'] == delete_name:
            delete_doc_ids.append(vectorstore.get()['ids'][idx])
    for id in delete_doc_ids:        
        vectorstore.delete(ids = id)  
    # vectorstore.persist()
    retriever = vectorstore.as_retriever(search_kwargs={'k':1})
    return retriever, vectorstore

def delete_all_doc(vectorstore):
    delete_doc_ids = vectorstore.get()['ids']
    for id in delete_doc_ids:        
        vectorstore.delete(ids = id)  
    # vectorstore.persist()
    retriever = vectorstore.as_retriever(search_kwargs={'k':1})
    return retriever, vectorstore