File size: 6,150 Bytes
caa4de5
4c42c50
37f2943
94a91a9
 
 
 
 
 
 
 
 
 
8724308
50f59bb
37f2943
 
 
 
 
 
4c42c50
 
37f2943
94a91a9
 
 
 
 
 
b75228d
94a91a9
 
 
 
 
 
 
 
 
 
 
b75228d
94a91a9
 
 
 
b75228d
94a91a9
 
 
 
2d020cc
94a91a9
 
 
 
37f2943
50f59bb
 
 
37f2943
 
50f59bb
37f2943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fde6d8b
37f2943
 
 
 
75002d8
37f2943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94a91a9
37f2943
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import { env, AutoTokenizer, RawImage, Tensor } from 'https://cdn.jsdelivr.net/npm/@huggingface/transformers';
import { getModelJSON, getModelFile } from "https://cdn.jsdelivr.net/npm/@huggingface/transformers@3.0.2/src/utils/hub.js";
import * as ort from "https://cdn.jsdelivr.net/npm/onnxruntime-web@1.20.0/dist/ort.webgpu.mjs";

// Since we will download the model from the Hugging Face Hub, we can skip the local model check
env.allowLocalModels = false;

// Reference the elements that we will need
const status = document.getElementById('status');
const fileUpload = document.getElementById('upload');
const imageContainer = document.getElementById('container');
const example = document.getElementById('example');

const EXAMPLE_URL = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg";
const INPUT_IMAGE_SIZE = [960, 960];
const HEIGHT_FACTOR = 10;
const WIDTH_FACTOR = 10;
const IMAGE_EMBED_SIZE = WIDTH_FACTOR * HEIGHT_FACTOR;
const MAX_SEQ_LENGTH = 1024;
const ONNX_URL = "http://localhost:3004/onnx";
const BASE_MODEL = "Qwen/Qwen2-VL-2B-Instruct";
const ONNX_MODEL = "pdufour/Qwen2-VL-2B-Instruct-ONNX-Q4-F16";
const QUANT = "q4f16";
const MAX_SINGLE_CHAT_LENGTH = 10;

status.textContent = 'Loading model...';
status.textContent = 'Ready';

example.addEventListener('click', (e) => {
    e.preventDefault();
    parse(EXAMPLE_URL, 'Describe this image.');
});

fileUpload.addEventListener('change', function (e) {
    const file = e.target.files[0];
    if (!file) {
        return;
    }

    const reader = new FileReader();

    // Set up a callback when the file is loaded
    reader.onload = e2 => parse(e2.target.result, '');

    reader.readAsDataURL(file);
});

async function parse(img, txt) {
    imageContainer.innerHTML = '';
    imageContainer.style.backgroundImage = `url(${img})`;

    status.textContent = 'Analysing...';
    const output = await imageTextToText(img, txt);
    status.textContent = '';
    output.forEach(renderBox);
}


export async function imageTextToText(
  imagePath,
  query,
  vision = true
) {
  const config = (await getModelJSON(BASE_MODEL, "config.json"))

  const prompt_head_len = new Tensor("int64", new BigInt64Array([5n]), [1]);

  let position_ids;
  let num_decode = 0;
  let history_len = new Tensor("int64", new BigInt64Array([0n]), [1]);

  let past_key_states = new ort.Tensor(
    "float16",
    new Uint16Array(
      config.num_hidden_layers *
        config.num_key_value_heads *
        MAX_SEQ_LENGTH *
        (config.hidden_size / config.num_attention_heads)
    ).fill(0),
    [
      config.num_hidden_layers,
      config.num_key_value_heads,
      MAX_SEQ_LENGTH,
      config.hidden_size / config.num_attention_heads,
    ]
  );

  let past_value_states = past_key_states;

  let attention_mask = new ort.Tensor(
    "float16",
    new Uint16Array([0xfbff]), // -65504.0 in float16
    [1]
  );

  let pos_factor = new Tensor("float16", new Uint16Array([0]), [1]);

  const tokenizer = await AutoTokenizer.from_pretrained(BASE_MODEL);
  const prompt = `\n<|im_start|>user\n<|vision_start|><|vision_end|>${query}<|im_end|>\n<|im_start|>assistant\n`;
  const token = await tokenizer(prompt, {
    return_tensors: "pt",
    add_generation_prompt: false,
    tokenize: true,
  }).input_ids;

  const seq_length = token.dims[1];
  let ids_len = new Tensor("int64", new BigInt64Array([BigInt(seq_length)]), [
    1,
  ]);

  let input_ids = new ort.Tensor(
    "int32",
    new Int32Array(MAX_SEQ_LENGTH).fill(0),
    [MAX_SEQ_LENGTH]
  );

  input_ids.data.set(Array.from(token.data.slice(0, seq_length), Number));

  if (vision) {
    let image = await RawImage.fromURL(imagePath);
    image = await image.resize(INPUT_IMAGE_SIZE[0], INPUT_IMAGE_SIZE[1]);
    image = image.rgb().toTensor("CHW").to("float32").div_(255.0);
    const pixel_values = image.unsqueeze(0);

    const ortSessionA = await ort.InferenceSession.create(
      await getModelFile(ONNX_MODEL, `onnx/QwenVL_A_${QUANT}.onnx`),
      { executionProviders: ["webgpu"] }
    );

    const { image_embed } = await ortSessionA.run({ pixel_values });

    ids_len = ids_len.add(BigInt(IMAGE_EMBED_SIZE));

    const ortSessionD = await ort.InferenceSession.create(
      `${BASE_URL}/QwenVL_D${suffix}.onnx`,
      { executionProviders: ["webgpu"] }
    );

    ({ hidden_states: past_key_states, position_ids } =
      await ortSessionD.run({
        "hidden_states.1": past_key_states,
        image_embed,
        ids_len,
        "ids_len_minus": new Tensor(
          "int32",
          new Int32Array([Number(ids_len.item()) - Number(prompt_head_len.item())]),
          [1]
        ),
        "split_factor": new Tensor(
          "int32",
          new Int32Array([
            MAX_SEQ_LENGTH - Number(ids_len.item()) - IMAGE_EMBED_SIZE,
          ]),
          [1]
        ),
      }));
  }

  const ortSessionB = await ort.InferenceSession.create(
    `${BASE_URL}/QwenVL_B${suffix}.onnx`,
    { executionProviders: ["webgpu"] }
  );

  while (
    num_decode < MAX_SINGLE_CHAT_LENGTH &&
    Number(history_len.data[0]) < MAX_SEQ_LENGTH
  ) {
    const ortSessionE = await ort.InferenceSession.create(
      `${BASE_URL}/QwenVL_E_q4f16.onnx`,
      { executionProviders: ["wasm"] }
    );

    const result = await ortSessionE.run({
      hidden_states: past_key_states,
      attention_mask,
      "past_key_states.1": past_key_states,
      "past_value_states.1": past_value_states,
      history_len,
      ids_len,
      position_ids,
      pos_factor,
    });

    const token_id = result.max_logit_ids;
    if (token_id === 151643 || token_id === 151645) break;

    num_decode++;

    history_len = history_len.add(BigInt(1));
    pos_factor = new Tensor(
      "float16",
      new Uint16Array([Number(pos_factor.data[0]) + 1]),
      [1]
    );

    past_key_states = result.past_key_states;
    past_value_states = result.past_value_states;

    input_ids.data[0] = Number(token_id.data[0]);
    const { hidden_states } = await ortSessionB.run({
      input_ids,
      ids_len,
    });

    past_key_states = hidden_states;
  }
}