File size: 4,269 Bytes
54648ea ee4ce56 54648ea ee4ce56 54648ea ee4ce56 ab1f0c5 ee4ce56 54648ea ee4ce56 54648ea ee4ce56 54648ea ee4ce56 54648ea ee4ce56 54648ea ee4ce56 54648ea ee4ce56 54648ea ee4ce56 54648ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import { AutoProcessor, Qwen2VLForConditionalGeneration, RawImage } from "@huggingface/transformers";
const EXAMPLE_URL = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg";
const exampleButton = document.getElementById('example');
const promptInput = document.querySelector('input[type="text"]');
const status = document.getElementById('status');
const thumb = document.getElementById('thumb');
const uploadInput = document.getElementById('upload');
const form = document.getElementById('form');
const output = document.getElementById('llm-output');
const dtypeSelect = document.getElementById('dtype-select');
const loadModelButton = document.getElementById('load-model');
const container = document.getElementById('container');
let currentImage = '';
let currentQuery = '';
const model_id = "onnx-community/Qwen2-VL-2B-Instruct";
let processor;
let model;
async function initializeSessions() {
loadModelButton.textContent = 'Loading Model...';
loadModelButton.classList.add('loading');
container.classList.add('disabled');
processor = await AutoProcessor.from_pretrained(model_id);
const dtype = dtypeSelect.value;
const options = { device: 'webgpu', };
if (dtype) {
options.dtype = dtype;
}
options['transformers.js_config'] = {};
options['transformers.js_config']['kv_cache_dtype'] = 'float16';
model = await Qwen2VLForConditionalGeneration.from_pretrained(model_id, options);
loadModelButton.textContent = 'Model Ready';
loadModelButton.classList.remove('loading');
loadModelButton.classList.add('ready');
dtypeSelect.disabled = true;
uploadInput.disabled = false;
promptInput.disabled = false;
container.classList.remove('disabled');
}
async function handleQuery(imageUrl, query) {
try {
loadModelButton.textContent = 'Processing...';
const result = await imageTextToText(imageUrl, query, (out) => {
console.log({ out });
output.textContent = out;
});
loadModelButton.textContent = 'Model Ready';
} catch (err) {
loadModelButton.textContent = 'Error';
console.error(err);
}
}
async function imageTextToText(
imagePath,
query,
cb,
) {
const image = await (await RawImage.read(imagePath)).resize(448, 448);
const conversation = [
{
role: "user",
content: [
{ type: "image" },
{ type: "text", text: query, },
],
images: [image],
},
];
const text = processor.apply_chat_template(conversation, { add_generation_prompt: true });
const inputs = await processor(text, image);
const outputs = await model.generate({
...inputs,
max_new_tokens: 128,
});
const decoded = processor.batch_decode(
outputs.slice(null, [inputs.input_ids.dims.at(-1), null]),
{ skip_special_tokens: true },
);
cb(decoded);
return decoded;
}
async function updatePreview(url) {
const image = await RawImage.fromURL(url);
const ar = image.width / image.height;
const [cw, ch] = (ar > 1) ? [320, 320 / ar] : [320 * ar, 320];
thumb.style.width = `${cw}px`;
thumb.style.height = `${ch}px`;
thumb.style.backgroundImage = `url(${url})`;
thumb.innerHTML = '';
}
loadModelButton.addEventListener('click', async () => {
dtypeSelect.disabled = true;
loadModelButton.disabled = true;
await initializeSessions();
});
// UI Event Handlers
exampleButton.addEventListener('click', (e) => {
e.preventDefault();
currentImage = EXAMPLE_URL;
updatePreview(currentImage);
});
uploadInput.addEventListener('change', (e) => {
const file = e.target.files[0];
if (!file) return;
const reader = new FileReader();
reader.onload = (e2) => {
currentImage = e2.target.result;
updatePreview(currentImage);
};
reader.readAsDataURL(file);
});
promptInput.addEventListener('keypress', (e) => {
currentQuery = e.target.value;
});
form.addEventListener('submit', (e) => {
e.preventDefault();
if (!currentImage || !currentQuery) {
loadModelButton.textContent = 'Please select an image and type a prompt';
setTimeout(() => {
loadModelButton.textContent = 'Model Ready';
}, 2000);
} else {
promptInput.disabled = true;
uploadInput.disabled = true;
handleQuery(currentImage, currentQuery);
}
});
|