add audio to text conversion
Browse files- app.py +20 -122
- transcribe.py +95 -0
app.py
CHANGED
@@ -1,121 +1,26 @@
|
|
1 |
-
# import whisper
|
2 |
import gradio as gr
|
3 |
-
import
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
# model = whisper.load_model("large-v2")
|
18 |
-
# embedding_model = PretrainedSpeakerEmbedding(
|
19 |
-
# "speechbrain/spkrec-ecapa-voxceleb",
|
20 |
-
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
21 |
-
# )
|
22 |
-
|
23 |
-
# def transcribe(audio, num_speakers):
|
24 |
-
# path, error = convert_to_wav(audio)
|
25 |
-
# if error is not None:
|
26 |
-
# return error
|
27 |
-
|
28 |
-
# duration = get_duration(path)
|
29 |
-
# if duration > 4 * 60 * 60:
|
30 |
-
# return "Audio duration too long"
|
31 |
-
|
32 |
-
# result = model.transcribe(path)
|
33 |
-
# segments = result["segments"]
|
34 |
-
|
35 |
-
# num_speakers = min(max(round(num_speakers), 1), len(segments))
|
36 |
-
# if len(segments) == 1:
|
37 |
-
# segments[0]['speaker'] = 'SPEAKER 1'
|
38 |
-
# else:
|
39 |
-
# embeddings = make_embeddings(path, segments, duration)
|
40 |
-
# add_speaker_labels(segments, embeddings, num_speakers)
|
41 |
-
# output = get_output(segments)
|
42 |
-
# return output
|
43 |
-
|
44 |
-
# def convert_to_wav(path):
|
45 |
-
# if path[-3:] != 'wav':
|
46 |
-
# new_path = '.'.join(path.split('.')[:-1]) + '.wav'
|
47 |
-
# try:
|
48 |
-
# subprocess.call(['ffmpeg', '-i', path, new_path, '-y'])
|
49 |
-
# except:
|
50 |
-
# return path, 'Error: Could not convert file to .wav'
|
51 |
-
# path = new_path
|
52 |
-
# return path, None
|
53 |
-
|
54 |
-
# def get_duration(path):
|
55 |
-
# with contextlib.closing(wave.open(path,'r')) as f:
|
56 |
-
# frames = f.getnframes()
|
57 |
-
# rate = f.getframerate()
|
58 |
-
# return frames / float(rate)
|
59 |
-
|
60 |
-
# def make_embeddings(path, segments, duration):
|
61 |
-
# embeddings = np.zeros(shape=(len(segments), 192))
|
62 |
-
# for i, segment in enumerate(segments):
|
63 |
-
# embeddings[i] = segment_embedding(path, segment, duration)
|
64 |
-
# return np.nan_to_num(embeddings)
|
65 |
-
|
66 |
-
# audio = Audio()
|
67 |
-
|
68 |
-
# def segment_embedding(path, segment, duration):
|
69 |
-
# start = segment["start"]
|
70 |
-
# # Whisper overshoots the end timestamp in the last segment
|
71 |
-
# end = min(duration, segment["end"])
|
72 |
-
# clip = Segment(start, end)
|
73 |
-
# waveform, sample_rate = audio.crop(path, clip)
|
74 |
-
# return embedding_model(waveform[None])
|
75 |
-
|
76 |
-
# def add_speaker_labels(segments, embeddings, num_speakers):
|
77 |
-
# clustering = AgglomerativeClustering(num_speakers).fit(embeddings)
|
78 |
-
# labels = clustering.labels_
|
79 |
-
# for i in range(len(segments)):
|
80 |
-
# segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1)
|
81 |
-
|
82 |
-
# def time(secs):
|
83 |
-
# return datetime.timedelta(seconds=round(secs))
|
84 |
-
|
85 |
-
# def get_output(segments):
|
86 |
-
# output = ''
|
87 |
-
# for (i, segment) in enumerate(segments):
|
88 |
-
# if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]:
|
89 |
-
# if i != 0:
|
90 |
-
# output += '\n\n'
|
91 |
-
# output += segment["speaker"] + ' ' + str(time(segment["start"])) + '\n\n'
|
92 |
-
# output += segment["text"][1:] + ' '
|
93 |
-
# return output
|
94 |
-
|
95 |
-
s = ""
|
96 |
-
|
97 |
-
def greet1(name):
|
98 |
-
global s
|
99 |
-
s = "modified"
|
100 |
-
return "Hello " + name + "!"
|
101 |
-
|
102 |
-
|
103 |
-
def greet2(name):
|
104 |
-
return "Hi " + name + "!" + " " + s
|
105 |
-
|
106 |
-
|
107 |
-
def greet3(name):
|
108 |
-
return "Hola " + name + "!"
|
109 |
-
|
110 |
with gr.Blocks() as demo:
|
111 |
with gr.Box():
|
112 |
with gr.Row():
|
113 |
with gr.Column():
|
114 |
audio_file = gr.File(label="Upload a Audio file (.wav)", file_count=1)
|
115 |
-
# name = gr.Textbox(label="Name", placeholder="Name") # TODO: remove
|
116 |
number_of_speakers = gr.Number(label="Number of Speakers", value=2)
|
117 |
with gr.Row():
|
118 |
-
btn_clear = gr.
|
119 |
btn_submit = gr.Button(value="Submit")
|
120 |
with gr.Column():
|
121 |
title = gr.Textbox(label="Title", placeholder="Title for Conversation")
|
@@ -123,22 +28,15 @@ with gr.Blocks() as demo:
|
|
123 |
sentiment_analysis = gr.Textbox(label="Sentiment Analysis", placeholder="Sentiment Analysis for Conversation")
|
124 |
quality = gr.Textbox(label="Quality of Conversation", placeholder="Quality of Conversation")
|
125 |
detailed_summary = gr.Textbox(label="Detailed Summary", placeholder="Detailed Summary for Conversation")
|
|
|
126 |
gr.Markdown("## Examples")
|
127 |
gr.Examples(
|
128 |
examples=[
|
129 |
-
[
|
130 |
-
"Harsh",
|
131 |
-
2,
|
132 |
-
],
|
133 |
-
[
|
134 |
-
"Rahul",
|
135 |
-
2,
|
136 |
-
],
|
137 |
],
|
138 |
-
inputs=[
|
139 |
-
outputs=[short_summary],
|
140 |
-
fn=
|
141 |
-
cache_examples=True,
|
142 |
)
|
143 |
gr.Markdown(
|
144 |
"""
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transcribe import transcribe
|
3 |
+
|
4 |
+
def main(audio_file, number_of_speakers):
|
5 |
+
# Audio to Text Converter
|
6 |
+
text_data = transcribe(audio_file, number_of_speakers)
|
7 |
+
print(text_data)
|
8 |
+
title = "ss"
|
9 |
+
short_summary = "dsa"
|
10 |
+
sentiment_analysis = "gyn"
|
11 |
+
quality = "dsdww"
|
12 |
+
detailed_summary = "jbjbjbjs"
|
13 |
+
return title, short_summary, sentiment_analysis, quality, detailed_summary
|
14 |
+
|
15 |
+
# UI Interface on the Hugging Face Page
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
with gr.Blocks() as demo:
|
17 |
with gr.Box():
|
18 |
with gr.Row():
|
19 |
with gr.Column():
|
20 |
audio_file = gr.File(label="Upload a Audio file (.wav)", file_count=1)
|
|
|
21 |
number_of_speakers = gr.Number(label="Number of Speakers", value=2)
|
22 |
with gr.Row():
|
23 |
+
btn_clear = gr.ClearButton(value="Clear", components=[audio_file, number_of_speakers])
|
24 |
btn_submit = gr.Button(value="Submit")
|
25 |
with gr.Column():
|
26 |
title = gr.Textbox(label="Title", placeholder="Title for Conversation")
|
|
|
28 |
sentiment_analysis = gr.Textbox(label="Sentiment Analysis", placeholder="Sentiment Analysis for Conversation")
|
29 |
quality = gr.Textbox(label="Quality of Conversation", placeholder="Quality of Conversation")
|
30 |
detailed_summary = gr.Textbox(label="Detailed Summary", placeholder="Detailed Summary for Conversation")
|
31 |
+
btn_submit.click(fn=main, inputs=[audio_file, number_of_speakers], outputs=[title, short_summary, sentiment_analysis, quality, detailed_summary])
|
32 |
gr.Markdown("## Examples")
|
33 |
gr.Examples(
|
34 |
examples=[
|
35 |
+
["./examples/sample4.wav", 2],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
],
|
37 |
+
inputs=[audio_file, number_of_speakers],
|
38 |
+
outputs=[title, short_summary, sentiment_analysis, quality, detailed_summary],
|
39 |
+
fn=main,
|
|
|
40 |
)
|
41 |
gr.Markdown(
|
42 |
"""
|
transcribe.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import whisper
|
2 |
+
import datetime
|
3 |
+
import subprocess
|
4 |
+
import wave
|
5 |
+
import contextlib
|
6 |
+
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import pyannote.audio
|
10 |
+
from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding
|
11 |
+
from pyannote.audio import Audio
|
12 |
+
from pyannote.core import Segment
|
13 |
+
from sklearn.cluster import AgglomerativeClustering
|
14 |
+
import numpy as np
|
15 |
+
|
16 |
+
model = whisper.load_model("large-v2")
|
17 |
+
embedding_model = PretrainedSpeakerEmbedding(
|
18 |
+
"speechbrain/spkrec-ecapa-voxceleb",
|
19 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
20 |
+
)
|
21 |
+
|
22 |
+
def transcribe(audio, num_speakers):
|
23 |
+
path, error = convert_to_wav(audio)
|
24 |
+
if error is not None:
|
25 |
+
return error
|
26 |
+
|
27 |
+
duration = get_duration(path)
|
28 |
+
if duration > 4 * 60 * 60:
|
29 |
+
return "Audio duration too long"
|
30 |
+
|
31 |
+
result = model.transcribe(path)
|
32 |
+
segments = result["segments"]
|
33 |
+
|
34 |
+
num_speakers = min(max(round(num_speakers), 1), len(segments))
|
35 |
+
if len(segments) == 1:
|
36 |
+
segments[0]['speaker'] = 'SPEAKER 1'
|
37 |
+
else:
|
38 |
+
embeddings = make_embeddings(path, segments, duration)
|
39 |
+
add_speaker_labels(segments, embeddings, num_speakers)
|
40 |
+
output = get_output(segments)
|
41 |
+
return output
|
42 |
+
|
43 |
+
def convert_to_wav(path):
|
44 |
+
if path[-3:] != 'wav':
|
45 |
+
new_path = '.'.join(path.split('.')[:-1]) + '.wav'
|
46 |
+
try:
|
47 |
+
subprocess.call(['ffmpeg', '-i', path, new_path, '-y'])
|
48 |
+
except:
|
49 |
+
return path, 'Error: Could not convert file to .wav'
|
50 |
+
path = new_path
|
51 |
+
return path, None
|
52 |
+
|
53 |
+
def get_duration(path):
|
54 |
+
with contextlib.closing(wave.open(path,'r')) as f:
|
55 |
+
frames = f.getnframes()
|
56 |
+
rate = f.getframerate()
|
57 |
+
return frames / float(rate)
|
58 |
+
|
59 |
+
def make_embeddings(path, segments, duration):
|
60 |
+
embeddings = np.zeros(shape=(len(segments), 192))
|
61 |
+
for i, segment in enumerate(segments):
|
62 |
+
embeddings[i] = segment_embedding(path, segment, duration)
|
63 |
+
return np.nan_to_num(embeddings)
|
64 |
+
|
65 |
+
audio = Audio()
|
66 |
+
|
67 |
+
def segment_embedding(path, segment, duration):
|
68 |
+
start = segment["start"]
|
69 |
+
# Whisper overshoots the end timestamp in the last segment
|
70 |
+
end = min(duration, segment["end"])
|
71 |
+
clip = Segment(start, end)
|
72 |
+
waveform, sample_rate = audio.crop(path, clip)
|
73 |
+
return embedding_model(waveform[None])
|
74 |
+
|
75 |
+
def add_speaker_labels(segments, embeddings, num_speakers):
|
76 |
+
"""Add speaker labels"""
|
77 |
+
clustering = AgglomerativeClustering(num_speakers).fit(embeddings)
|
78 |
+
labels = clustering.labels_
|
79 |
+
for i in range(len(segments)):
|
80 |
+
segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1)
|
81 |
+
|
82 |
+
def time(secs):
|
83 |
+
"""Function to return time delta"""
|
84 |
+
return datetime.timedelta(seconds=round(secs))
|
85 |
+
|
86 |
+
def get_output(segments):
|
87 |
+
"""Format and generate the output string"""
|
88 |
+
output = ''
|
89 |
+
for (i, segment) in enumerate(segments):
|
90 |
+
if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]:
|
91 |
+
if i != 0:
|
92 |
+
output += '\n\n'
|
93 |
+
output += segment["speaker"] + ' ' + str(time(segment["start"])) + '\n'
|
94 |
+
output += segment["text"][1:] + ' '
|
95 |
+
return output
|